一、单个折射球面光路计算公式
1. 表示光线位置的坐标
入射光线:光线与光轴交点 A 到球面顶点的距离 L ,入射光线与光轴的夹角 U
出射光线:L’,U’
2. 公式推导
已知:入射光线位置 L,U ;光学系统 r, n, n’。
求:通过单个折射球面后的折射光线位置 L’, U’。
- sinI
对 Δ \Delta ΔAPC 应用正弦定理, L + r s i n I = r s i n U {L+r \over sinI}={r \over sinU} sinIL+r=sinUr
==> s i n I = L + r r s i n U sinI = {L+r \over r}sinU sinI=rL+rsinU
- sinI’
根据折射定律, s i n I ′ = n n ′ s i n I sinI'={n \over n'}sinI sinI′=n′nsinI
- U’
根据外角定理,( Δ P A A ′ \Delta PAA' ΔPAA′)I - I’ = U + U’
==> U’ = I - I’ - U
- L’
对 Δ A ′ P C \Delta A'PC ΔA′PC 同样应用正弦定理 L ′ − r s i n I ′ = r s i n U ′ {L'-r \over sinI'}={r \over sinU'} sinI′L′−r=sinU′r
==> L ′ = r + r s i n I ′ s i n U ′ L'=r+{rsinI' \over sinU'} L′=r+sinU′rsinI′
- 转面公式
在多个球面构成的共轴系统中,前一表面的出射光线是下一面的入射光线。再次运用公式计算时,需要进行坐标转换。
U 2 = U 1 ′ , L 2 = L 1 ′ − d U_2 = U_1', L_2 = L_1' - d U2=U1′,L2=L1′−d
二、符号规则
1. 符号规则
线段
-
符号:由左向右为正,由下向上为正,反之为负。
-
线段起点:
- L、L’:由球面顶点算起到光线与光轴之间的交点。
- r:由球面顶点算起到球心。
- d:由前一面顶点算起到下一面顶点
角度
-
符号:一律以锐角度量,顺时针转为正,逆时针转为负。
-
角度起始轴:
- U、U’:由光轴起转到光线;
- I、I’:由光线起转到法线;
- ϕ \phi ϕ:由光轴起转到法线。
2. 符号规则的应用
推导公式
- 确定符号规则
- 画图并按符号规则标注图形
- 利用几何关系推导公式
注意:由于几何光学利用三角几何关系进行公式推导,用到的是线段的长度和角度的大小。因此,几何图形上各量一律标注其绝对值,永远为正。
L
−
r
s
i
n
I
=
r
s
i
n
U
s
i
n
I
′
=
n
n
′
s
i
n
I
U
′
=
I
−
I
′
+
U
L
′
=
r
+
r
s
i
n
I
′
s
i
n
i
U
′
U
2
=
U
1
′
,
L
2
=
L
1
′
−
d
1
\begin{equation}\begin{split} &{L-r \over sinI} = {r \over sinU}\\ &sinI' = {n \over n'}sinI\\ &U' = I - I' + U\\ &L' = r + {rsinI' \over siniU'}\\ &U_2=U_1',L_2 = L_1' - d_1\\ \end{split}\end{equation}
sinIL−r=sinUrsinI′=n′nsinIU′=I−I′+UL′=r+siniU′rsinI′U2=U1′,L2=L1′−d1
数值计算
- 根据几何位置,按照符号规则确定已知参量的符号;
- 将已知数据代入公式进行计算;
- 根据计算结果按符号规则,找出像点的几何位置。
把反射看成是 n’ = -n 的折射
注意:
- 应用光学公式中每个量都有符号规则,不存在没有符号的量;
- 符号规则与公式是统一的整体,符号规则不同,公式形式则不同。
三、球面近轴范围内成像性质和近轴光路计算公式
1.球面近轴范围内计算公式公式
- 由同一物点 A 发出的光线,经球面折射后,不交于一点。球面成像不理想。
- 三条光线对应的距离 L 1 ′ L_1' L1′ 随着 U 1 U_1 U1 (绝对值)的增大而逐渐减小。
- U 1 U_1 U1 越小, L 1 ′ L_1' L1′ 变化越慢。当 U 1 U_1 U1 相当小时, L 1 ′ L_1' L1′ 几乎不变。靠近光轴的光线聚焦得越好。
- 靠近光轴的区域称为近轴区域,这一区域的光线称为近轴光线,U、U’、I、I’。
- 近轴光路计算公式有误差
s i n θ = θ i = l − r r u i ′ = n n ′ i u ′ = u + i − i ′ l ′ = r + i ′ u r l 2 = L 1 ′ − d 1 u 2 = u 1 ′ \begin{equation}\begin{split} &sin \theta = \theta \\ &i = {l - r \over r} u\\ &i' = {n \over n'} i\\ &u' = u + i - i'\\ &l' = r + {i' \over u}r\\ &l_2 = L_1' - d_1\\ &u_2 = u_1' \end{split}\end{equation} sinθ=θi=rl−rui′=n′niu′=u+i−i′l′=r+ui′rl2=L1′−d1u2=u1′
2. 近轴光线的成像质量
- 轴上物点用近轴光线成像时,符合理想成像;
- 位于近轴区域内的物点,利用近轴光线成像时,符合对应点的理想成像关系。
四、近轴光学物像基本公式
1.近轴光路计算的另一种形式
n ′ u ′ − n u = h r ( n ′ − n ) u 2 = u 1 ′ h 2 = h 1 − d 1 u 1 ′ \begin{equation}\begin{split} &n'u'- nu = {h \over r}(n' - n)\\ &u_2 = u_1'\\ &h_2 = h_1 - d_1u_1'\\ \end{split}\end{equation} n′u′−nu=rh(n′−n)u2=u1′h2=h1−d1u1′
2. l’ = f(n, n’, r, l)
- 物像位置关系式
n ′ l ′ − n l = n ′ − n r {n' \over l'} - {n \over l} = {n' - n \over r} l′n′−ln=rn′−n
- 物像大小关系式
β = y ′ y = n l ′ n ′ l \beta = {y' \over y} = {nl' \over n'l} β=yy′=n′lnl′
- 转面公式
l 2 = L 1 ′ − d , y 2 = y 1 ′ l_2 = L_1' - d, y_2 = y_1' l2=L1′−d,y2=y1′
-
利用公式可由任意位置和大小的物体,求得通过单个折射球面后近轴像的大小和位置。
-
对若干个透镜组成的共轴球面系统,逐面应用公式,可以求得任意共轴系统所组成的近轴像的位置和大小。
3. 近轴光学基本公式的作用
-
作为衡量实际光学系统成像质量的标准
-
用它可以近似地表示实际光学系统所成像的位置和大小
五、共轴理想光学系统的基点
1. 主平面
- 放大率 β \beta β = 1 的一对共轭面称为主平面。
- 物平面称为物方主平面,像平面称为像方主平面。
- 两主平面和光轴的交点分别称为物方主点和像方主点。
- 任意一条入射光线与物方主平面的交点高度和出射光线与像方主平面的交点高度相同。
2. 像方焦点
无限远物体的表示方法
- 物体距离光学系统越远, L 长度增加,U 角减小;
- 物体趋于无限远时,U = 0°,光线与光轴平行;
- 无限远轴上物体:用一束与光轴平行的光线表示;
- 无限远轴外物体:用一束与光轴成一定夹角的平行光线表示。
像方焦点
- 当轴上物体位于无限远时,它的像点位于 F’ 处, F’ 称为像方焦点;
- 通过像方焦点垂直于光轴的平面称为像方焦平面;
- 像方焦平面和垂直于光轴的无限远的物平面共轭。
像方焦点和物方焦平面性质
- 平行于光轴入射的任意一条光线,其共轭光线一定通过像方焦点 F’;
- 和光轴成一定夹角的光线通过光学系统后,必交于像平面上同一点。
3. 物方焦点
物方焦点
- 如果轴上某一物体 F,和它共轭的像点位于轴上无限远,则 F 称为物方焦点;
- 通过 F 垂直于光轴的平面称为物方焦平面;
- 物方焦平面和垂直于光轴的无限远像平面共轭。
物方焦点和物方焦平面的性质
- 过物方焦点入射的光线,通过光学系统后平行于光轴出射;
- 由物方焦平面上轴外任意一点下发出的所有光线,通过光学系统后,对应一束和光轴成一定角度的平行光线。
应用 ==> 平行光管
4. 焦距
焦距
- 主平面和焦点之间的距离称为焦距;
- 像方焦距:由像方主点 H’ 到像方焦点 F’ 的距离称为像方焦距,用 f’ 表示;
- 物方焦距:由物方主点 H 到物方焦点 F 的距离称为物方焦距,用 f 表示。
焦距非符号规则
- f 以 H 为起点,计算到 F,由左向右为正;
- f’ 以 H’ 为起点,计算到 F’,由左向右为正。
六、共轴球面系统的主平面和焦点
1. 单个折射球面的主平面和焦点
球面的主点位置
球面的两个主点与球面顶点重合,其物方主平面和像方主平面即为过球面顶点的切平面;
球面焦距公式
- 像方焦距:l =
∞
\infty
∞ , l’ = f’
n ′ l ′ − n l = n ′ − n r = = > f ′ = n ′ r n ′ − n {n' \over l'} - {n \over l}= {n' - n \over r} ==> f'={n'r \over n'-n} l′n′−ln=rn′−n==>f′=n′−nn′r - 物方焦距:l = f,l’ =
∞
\infty
∞
f = − n r n ′ − n f = {-nr \over n' - n} f=n′−n−nr
单个反射球面
n’ = -n ==> f’ = f = r 2 {r \over 2} 2r
2. 共轴球面系统的主平面和焦点
像方焦点和主平面
- 追迹一条平行光轴入射的光线,通过 k 个表面折射后,出射光线与光轴交点就是系统像方焦点 F’;
- 延长入射光线和出射光线。其焦点必定位于像柱平面上。
- 焦距公式: f ′ = h 1 u k ′ f' = {h_1 \over u_k'} f′=uk′h1
物方焦点和物方主平面
将光学系统翻转,按照计算像方焦点和像方主平面同样的方法,计算出来的结果就是物方焦点和物方主平面,不过所有的参数符号都要取反。
七、作图法求像
求像:找出由物点发出的两条光线的共轭光线,交点就是该物点的像。
1.两条特殊光线
- 通过物点平行光轴入射的光线,共轭光线通过像方焦点 F’;
- 通过物点和物点焦距 F 入射的光线,共轭光线平行于光轴出射。
2. 作图法求像规则
- 实物、实像、实际光线用实线;
- 虚物、虚像、光线的延长线用虚线;
- 光线有箭头,折射系统光线一律从左往右。
3. 实例
-
轴外物点
-
轴上物点
-
无穷远轴外点
-
正透镜虚物成实像
-
负透镜实物成虚像
八、理想光学系统的物像关系式
1. 牛顿公式
x x ′ = f f ′ β = y ′ y = − f x = − x ′ f ′ \begin{equation}\begin{split} &xx' = ff'\\ \beta = &{y' \over y}=-{f \over x}={- x' \over f'} \end{split}\end{equation} β=xx′=ff′yy′=−xf=f′−x′
- x :以物方焦点 F 为原点到物点 A;
- x’ :以像方焦点 F’ 为原点到像点 A’.
2. 高斯公式
f ′ l ′ + f l = 1 β = − f l ′ f ′ l \begin{equation}\begin{split} &{f' \over l'} + {f \over l} = 1\\ &\beta = - { fl' \over f'l} \end{split}\end{equation} l′f′+lf=1β=−f′lfl′
- l :以物方主点 H 为原点算到物点 A
- l’ :以像方主点 H’ 为原点算到像点 A’
3. 物像关系式的应用
- 写出已知条件和要求解的问题;
- 尽可能画出图形;
- 正确标注图形;
- 推导或代入公式;
- 求解结果。
九、光学系统的放大率
1. 垂轴放大率
β = y y ′ = 像高 物高 \beta = {y \over y'} = {像高 \over 物高} β=y′y=物高像高
- 垂轴放大率与物距和像距有关,当物像共轭面确定了,垂轴放大率就确定了;
- 若 β \beta β > 0, y’ 与 y 同号,成正像;l’ 与 l 同号,物像虚实相反;
- 若 β \beta β < 0, y’ 与 y 反号,成倒像;l’ 与 l 反号,物像虚实相同;
- ∣ β ∣ |\beta| ∣β∣ < 1, ∣ y ′ ∣ > ∣ y ∣ |y'| > |y| ∣y′∣>∣y∣ ,成放大的像;
- ∣ β ∣ |\beta| ∣β∣ > 1, ∣ y ′ ∣ < ∣ y ∣ |y'| < |y| ∣y′∣<∣y∣ ,成放大的像。
2. 轴向放大率
当物平面沿着光轴移动微小的距离 dx 时,像平面相应地移动距离 dx’,比例 d x ′ d x {dx' \over dx} dxdx′ 称为光学系统的轴向放大率,用α来表示。
- 高斯公式
α = d x ′ d x = d l ′ d l = − f l ′ 2 f ′ l 2 \alpha = {dx' \over dx} = {dl' \over dl} = - {fl'^2 \over f'l^2} α=dxdx′=dldl′=−f′l2fl′2 - 牛顿公式
α = d x ′ d x = − x ′ x \alpha = {dx' \over dx} = - {x' \over x} α=dxdx′=−xx′
3. 角放大率
角放大率是共轭面上的轴上点 A 发出的光线通过光学系统后,出射光线与光轴的夹角 U’ 的正切和对应的入射光线与光轴所成夹角 U 的正切之比
γ
=
t
g
U
′
t
g
U
\gamma = {tgU' \over tgU}
γ=tgUtgU′
-
高斯公式
γ = t g U ′ t g U = l l ′ \gamma = {tgU' \over tgU} = {l \over l'} γ=tgUtgU′=l′l
角放大率只和l、l’ 有关,其大小仅取决于共轭面的位置,而与光线的会聚角无关,所以它与近轴光线的角放大率相同。 -
牛顿公式
γ = x f ′ = f x ′ \gamma = {x \over f'} = {f \over x'} γ=f′x=x′f
4. 三种放大率之间的关系
β = α ⋅ γ \beta = \alpha · \gamma β=α⋅γ
十、物像空间不变式
拉格朗日-亥姆霍兹不变式:代表实际光学系统在近轴范围内成像的一种普遍特性。
1. 单个折射球面不变式
n u y = n ′ u ′ y ′ nuy = n'u'y' nuy=n′u′y′
2. 多个折射球面共轴系统不变式
对任意物像空间来说,乘积 nuy 总是一个常数,用 物像空间不变量 J 表示: J = nuy。
3. 理想光学系统的物像空间不变式
- 理想光学系统的物像空间不变式
y t g U = y ′ t g U ′ ytgU = y'tgU' ytgU=y′tgU′ - 当物像空间的介质相同时,变成:
y t g U = y ′ t g U ′ ytgU = y'tgU' ytgU=y′tgU′ - 反射时,每经过一次反射,介质折射率符号改变一次。奇数次反射,符号相反;偶数次反射,则符号相同。
十一、物方焦距和像方焦距的关系
1. 单个折射球面
f ′ f = − n ′ n {f' \over f} = -{n' \over n} ff′=−nn′
2. 理想光学系统
f
′
f
=
−
n
′
n
{f' \over f} = -{n' \over n}
ff′=−nn′
结论:一个光学系统的像方焦距和物方焦距之比等于像空间和物空间介质的折射率之比,但符号相反。
3. 位于空气中的光学系统
- 位于空气中的光学系统,物方和像方焦距大小相等,符号相反;
- 物像位置关系:
牛顿公式: x x ′ = − f ′ 2 高斯公式: 1 l ′ − 1 l = 1 f ′ \begin{equation}\begin{split} &牛顿公式:xx' = - f'^2 \\ &高斯公式:{1 \over l'} - {1 \over l} = {1 \over f'} \end{split}\end{equation} 牛顿公式:xx′=−f′2高斯公式:l′1−l1=f′1 - 放大率公式:
垂轴放大率: β = l ′ l 轴向放大率: α = l ′ 2 l 2 角放大率:公式形式不变 \begin{equation}\begin{split} &垂轴放大率:\beta = {l' \over l} \\ &轴向放大率:\alpha = {l'^2 \over l^2} \\ 角放大率:公式形式不变 \end{split}\end{equation} 角放大率:公式形式不变垂轴放大率:β=ll′轴向放大率:α=l2l′2 - 三种放大率的之间的关系: β ⋅ γ = 1 , α = β γ = β 2 \beta · \gamma = 1,\alpha = {\beta \over \gamma} = \beta^2 β⋅γ=1,α=γβ=β2
十二、节平面和节点
1. 定义
角放大率等于1的一对共轭面称为节平面。
2. 性质
凡过物方节点 J 的光线,其出射光线必过像方节点 J’ ,并且和入射光线相平行。
3. 节点位置
x
J
=
f
′
,
x
J
′
=
f
x_J = f',x_J' = f
xJ=f′,xJ′=f
如果物像空间介质相等,主平面也就是节平面。
4. 应用
-
作图法求理想像时,可用来做第三条特殊光线
-
测量基点的位置
光学系统绕像方节点的轴线的节点摆动时,像点不会发生摆动。
-
周视照相机
-
单个折射球面物方和像方节点均与球心重合
十三、无限远物体理想像高计算公式
当物体位于有限远时
- 如果已知主面,焦点和焦距,则可利用高斯公式和牛顿公式;
- 如果已知具体的结构参数、半径、厚度、折射率,则可追迹轴上的近轴光线: β = n 1 u 1 n k ′ u k ′ \beta = {n_1u_1 \over n_k'u_k'} β=nk′uk′n1u1
1. 无限远物体的理想像高公式
物体位于无限远时,所成的像在像方焦平面上;过物方焦点 F 并与光轴成
ω
\omega
ω 夹角入射的光线 FI,射出后平行于光轴。与像方焦面的交点是无限远轴外物点 B 的像点。
y
=
H
I
=
−
f
⋅
t
g
(
−
ω
)
=
f
⋅
t
g
ω
y = HI = - f·tg(-\omega) = f·tg\omega
y=HI=−f⋅tg(−ω)=f⋅tgω
2. 无限远的像所对应的物高计算公式
无限远的轴外像点对应一束与光轴有一定夹角的平行光线。
y
=
f
′
⋅
t
g
ω
′
y = f'·tg\omega'
y=f′⋅tgω′
3. 应用
- 望远系统分划板刻度大小计算
- 视场仪分划板刻度大小计算
十四、理想光学系统的组合
1. 焦点位置公式
两系统间的相对位置用第一系统的像方焦点 F 1 ′ F_1' F1′ 到第二系统的物方焦点 F 2 F_2 F2 的距离 Δ \Delta Δ 表示,符号规则:以 F 1 ′ F_1' F1′ 为起点,计算到 F 2 F_2 F2 ,由左到右为正。
- 像方焦点 F’ 的位置
对于第二个光学系统,
F
1
′
F_1'
F1′ 和
F
2
F_2
F2 是一对共轭点。
x:以
F
2
F_2
F2 为起点计算到
F
1
′
F_1'
F1′ ,x = -
Δ
\Delta
Δ
x’:由
F
2
′
F_2'
F2′ 到
F
′
F'
F′ 的距离。为了区别,用
x
F
′
x_F'
xF′ 表示。
==> 代入牛顿公式得, x F ′ = − f 2 f 2 ′ Δ x_F' = - {f_2f_2' \over \Delta} xF′=−Δf2f2′
- 物方焦点 F 的位置
由牛顿公式得, x F ′ = f 1 f 1 ′ Δ x_F' = {f_1f_1' \over \Delta} xF′=Δf1f1′
2. 焦距公式
- 像方焦距
平行光轴入射的光线和出射光线的延长线的交点 M’ ,一定位于像方主平面上。
f
′
=
−
f
1
′
f
2
′
Δ
,
(
Δ
=
d
−
f
1
′
+
f
2
)
f' = - {f_1'f_2' \over \Delta},(\Delta = d - f_1' + f_2)
f′=−Δf1′f2′,(Δ=d−f1′+f2)
- 物方焦距
f = f 1 f 2 Δ f = {f_1f_2 \over \Delta} f=Δf1f2 - 另外一种形式表示的公式
n 3 f ′ = n 2 f 1 ′ + n 3 f 2 ′ − n 3 d f 1 ′ f 2 ′ = − n 1 f {n_3 \over f'}={n_2 \over f_1'}+{n_3 \over f_2'}-{n_3d \over f_1'f_2'}= -{n_1 \over f} f′n3=f1′n2+f2′n3−f1′f2′n3d=−fn1
当两个系统位于同一种介质中时,
1 f ′ = 1 f 1 ′ + 1 f 2 ′ − d f 1 ′ f 2 ′ {1 \over f'}={1 \over f_1'}+{1 \over f_2'}-{d \over f_1'f_2'} f′1=f1′1+f2′1−f1′f2′d
光焦度:像方焦距的倒数 ϕ = 1 f ′ \phi ={1 \over f'} ϕ=f′1
ϕ = ϕ 1 + ϕ 2 − d ϕ 1 ϕ 2 \phi = \phi_1 + \phi_2 - d\phi_1\phi_2 ϕ=ϕ1+ϕ2−dϕ1ϕ2
十五、理想光学系统的光路计算公式
1. 单个理想光学系统的光路计算公式
n
′
t
g
U
′
−
n
t
g
U
=
n
′
h
ϕ
n'tgU' - ntgU = n'h\phi
n′tgU′−ntgU=n′hϕ
当n’ = n = 1时,有
t
g
U
′
−
t
g
U
=
h
ϕ
tgU' - tgU = h\phi
tgU′−tgU=hϕ
2. 多个理想光学系统的光路计算公式
n ′ t g U ′ − n t g U = n ′ h ϕ U i + 1 = U i ′ h i + 1 = h i − d i t g U i ′ \begin{equation}\begin{split} &n'tgU' - ntgU = n'h\phi\\ &U_{i+1}=U_i'\\ &h_{i+1}=h_i-d_itgU_i' \end{split}\end{equation} n′tgU′−ntgU=n′hϕUi+1=Ui′hi+1=hi−ditgUi′
3. 理想光学系统光路计算公式应用
- 求组合系统的主平面,焦点位置
焦点位置:
l
F
′
=
h
k
t
g
U
k
′
l_F'={h_k \over tgU_k'}
lF′=tgUk′hk
焦距:$f’ = {h_1 \voer tgU_k’}
- 求像平面的位置和放大率
l k ′ = h k t g U k ′ , β = 1 γ = t g u 1 t g u k ′ l_k' = {h_k \over tgU_k'}, \beta = {1 \over \gamma} = {tgu_1 \over tgu_k'} lk′=tgUk′hk,β=γ1=tguk′tgu1
- 计算光学零件的通光口径
在计算光学系统中各个零件的口径大小时,经常要用到理想光路计算公式,用光路计算的方法,找出零件上光线的投射高,从而确定口径。
十六、单透镜的主面和焦点位置的计算公式
1. 单透镜的主面和焦点位置
单透镜
1 f ′ = ( n − 1 ) ( 1 r 1 − 1 r 2 ) − ( n − 1 ) 2 d n r 1 r 2 = − 1 f l H = − r 1 d n ( r 2 − r 1 ) + ( n − 1 ) d l H ′ = − r 2 d n ( r 2 − r 1 ) + ( n − 1 ) d a = d ( n − 1 ) ( r 2 − r 1 + d ) n ( r 2 − r 1 ) + ( n − 1 ) d \begin{equation}\begin{split} &{1 \over f'} = (n - 1)\Bigg({1 \over r_1} - {1 \over r_2}\Bigg) - {(n - 1)^2d \over nr_1r_2} = - {1 \over f} \\ &l_H = {-r_1d \over n(r_2 - r_1) + (n - 1)d} \\ &l_H' = {-r_2d \over n(r_2 - r_1) + (n - 1)d} \\ &a = {d(n - 1)(r_2 - r_1 + d) \over n(r_2 - r_1) + (n - 1)d} \end{split}\end{equation} f′1=(n−1)(r11−r21)−nr1r2(n−1)2d=−f1lH=n(r2−r1)+(n−1)d−r1dlH′=n(r2−r1)+(n−1)d−r2da=n(r2−r1)+(n−1)dd(n−1)(r2−r1+d)
单薄透镜
1
f
′
=
(
n
−
1
)
(
1
r
1
−
1
r
2
)
=
−
1
f
l
H
=
−
r
1
d
n
(
r
2
−
r
1
)
l
H
′
=
−
r
2
d
n
(
r
2
−
r
1
)
a
=
d
(
n
−
1
)
n
\begin{equation}\begin{split} &{1 \over f'} = (n - 1)\Bigg({1 \over r_1} - {1 \over r_2}\Bigg)= - {1 \over f} \\ &l_H = {-r_1d \over n(r_2 - r_1)} \\ &l_H' = {-r_2d \over n(r_2 - r_1)} \\ &a = {d(n - 1) \over n} \end{split}\end{equation}
f′1=(n−1)(r11−r21)=−f1lH=n(r2−r1)−r1dlH′=n(r2−r1)−r2da=nd(n−1)
2. 各种透镜的形状及主平面位置
十七、本章总结
1. 基本方法
根据几何光学的基本定律,找出由物体上的某一物点发出的一系列光线通过光学系统以后的出射光线的位置,由这些出射光线与光轴和像面的交点决定像的位置和大小。
2. 主要思路
已知光学系统结构参数r,n,d 和物位置、大小,求像位置和大小
-
近轴光路计算公式
s i n θ = θ i = l − r r u i ′ = n n ′ i u ′ = u + i − i ′ l ′ = r + i ′ u r l 2 = L 1 ′ − d 1 u 2 = u 1 ′ \begin{equation}\begin{split} &sin \theta = \theta \\ &i = {l - r \over r} u\\ &i' = {n \over n'} i\\ &u' = u + i - i'\\ &l' = r + {i' \over u}r\\ &l_2 = L_1' - d_1\\ &u_2 = u_1' \end{split}\end{equation} sinθ=θi=rl−rui′=n′niu′=u+i−i′l′=r+ui′rl2=L1′−d1u2=u1′ -
近轴光路基本公式
n ′ l ′ − n l = n ′ − n r {n' \over l'} - {n \over l} = {n' - n \over r} l′n′−ln=rn′−n
β = y ′ y = n l ′ n ′ l \beta = {y' \over y} = {nl' \over n'l} β=yy′=n′lnl′
已知理想光学系统 H,H’,F,F’ 和物位置、大小,求像位置和大小 -
牛顿公式
x x ′ = f f ′ β = y ′ y = − f x = − x ′ f ′ \begin{equation}\begin{split} &xx' = ff'\\ \beta = &{y' \over y}=-{f \over x}={- x' \over f'} \end{split}\end{equation} β=xx′=ff′yy′=−xf=f′−x′ -
高斯公式
f ′ l ′ + f l = 1 β = − f l ′ f ′ l \begin{equation}\begin{split} &{f' \over l'} + {f \over l} = 1\\ &\beta = - { fl' \over f'l} \end{split}\end{equation} l′f′+lf=1β=−f′lfl′ -
理想系统组合公式
f ′ = − f 1 ′ f 2 ′ Δ , ϕ = ϕ 1 + ϕ 2 − d ϕ 1 ϕ 2 f' = - {f_1'f_2' \over \Delta},\phi = \phi_1 + \phi_2 - d\phi_1\phi_2 f′=−Δf1′f2′,ϕ=ϕ1+ϕ2−dϕ1ϕ2 -
理想光路计算公式
n ′ t g U ′ − n t g U = n ′ h ϕ n'tgU' - ntgU = n'h\phi n′tgU′−ntgU=n′hϕ