文章目录
前言
本篇论文2020年8月发表于KDD2020。基于语义融合,在KBRD模型的基础上增强了对话推荐系统的性能。KBRD模型详见博客对话推荐CRS论文精读KBRD:Towards Knowledge-Based Recommender Dialog System
文章链接:https://arxiv.org/pdf/2007.04032.pdf
代码链接:https://github.com/Lancelot39/KGSF
一、原文摘要
对话推荐系统(CRS)旨在通过交互式对话向用户推荐高质量的商品。对于现有的CRS工作,仍有两个主要问题有待解决:第一,对话数据本身缺乏足够的上下文信息,无法准确理解用户的偏好。第二,自然语言表达和项目级用户偏好之间存在语义鸿沟。
为了解决这些问题,我们结合了面向词和面向实体的知识图谱来增强CRS中的数据表示,并采用互信息最大化来对齐词级和实体级语义空间。基于对齐的语义表示,我们进一步开发了一个KG-enhenced推荐组件,用于做出准确的推荐,以及一个知识图谱增强的对话组件,可以在响应文本中生成信息关键字或实体。大量的实验证明了我们的方法在推荐和对话任务上的有效性。
二、为什么要提出KGSF
2.1当前CRS存在的问题
- 第一,对话数据只由几句话组成,缺乏足够的上下文信息来准确理解用户的偏好。
如表1所示,用户表述自己仅使用两句话,那么系统为了搞清楚用户的偏好,需要理解 s c a r y scary scary, P a r a n o r m a l Paranormal Paranormal A c t i v i t y Activity Activity二者间的关系。仅仅基于上下文对话显然是无法理解的。

- 第二,自然语言表达和项目级用户偏好之间存在语义鸿沟。
用户以自然语言表述,但实际上用户可能对表述后面的项目或是实体上(例如体裁、演员)。语言表述和实体偏好存在着语义鸿沟。那么就需要一种有效的语义融合方式来理解并生成话语。
如上面的表1所示。系统给用户推荐了 I t It It,并附加了推荐的原因 I t It It i s is is a a a c l a s s i c classic classic t h r i l l e r thriller thriller m o v i e movie movie w i t h with
知识图谱融合提升对话推荐系统性能:KGSF2.1

论文介绍了一种新型对话推荐系统KGSF2.1,针对对话数据缺乏上下文和自然语言与实体偏好鸿沟的问题,通过结合词级和项目级知识图谱,利用互信息最大化融合语义,改进了推荐与对话生成。实验结果表明KGSF在推荐和对话任务上表现出色,尤其在冷启动情况下效果显著。
最低0.47元/天 解锁文章
438

被折叠的 条评论
为什么被折叠?



