对话推荐系统CRS论文精读KGSF:Improving Conversational Recommender Systems via Knowledge Graph based Semantic Fu

知识图谱融合提升对话推荐系统性能:KGSF2.1
论文介绍了一种新型对话推荐系统KGSF2.1,针对对话数据缺乏上下文和自然语言与实体偏好鸿沟的问题,通过结合词级和项目级知识图谱,利用互信息最大化融合语义,改进了推荐与对话生成。实验结果表明KGSF在推荐和对话任务上表现出色,尤其在冷启动情况下效果显著。

前言

本篇论文2020年8月发表于KDD2020。基于语义融合,在KBRD模型的基础上增强了对话推荐系统的性能。KBRD模型详见博客对话推荐CRS论文精读KBRD:Towards Knowledge-Based Recommender Dialog System
文章链接:https://arxiv.org/pdf/2007.04032.pdf
代码链接:https://github.com/Lancelot39/KGSF

一、原文摘要

对话推荐系统(CRS)旨在通过交互式对话向用户推荐高质量的商品。对于现有的CRS工作,仍有两个主要问题有待解决:第一,对话数据本身缺乏足够的上下文信息,无法准确理解用户的偏好。第二,自然语言表达和项目级用户偏好之间存在语义鸿沟。
为了解决这些问题,我们结合了面向词和面向实体的知识图谱来增强CRS中的数据表示,并采用互信息最大化来对齐词级和实体级语义空间。基于对齐的语义表示,我们进一步开发了一个KG-enhenced推荐组件,用于做出准确的推荐,以及一个知识图谱增强的对话组件,可以在响应文本中生成信息关键字或实体。大量的实验证明了我们的方法在推荐和对话任务上的有效性。

二、为什么要提出KGSF

2.1当前CRS存在的问题

  • 第一,对话数据只由几句话组成,缺乏足够的上下文信息来准确理解用户的偏好。
    如表1所示,用户表述自己仅使用两句话,那么系统为了搞清楚用户的偏好,需要理解 s c a r y scary scary P a r a n o r m a l Paranormal Paranormal A c t i v i t y Activity Activity二者间的关系。仅仅基于上下文对话显然是无法理解的。
    在这里插入图片描述
  • 第二,自然语言表达和项目级用户偏好之间存在语义鸿沟。
    用户以自然语言表述,但实际上用户可能对表述后面的项目或是实体上(例如体裁、演员)。语言表述和实体偏好存在着语义鸿沟。那么就需要一种有效的语义融合方式来理解并生成话语。
    如上面的表1所示。系统给用户推荐了 I t It It,并附加了推荐的原因 I t It It i s is is a a a c l a s s i c classic classic t h r i l l e r thriller thriller m o v i e movie movie w i t h with
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值