主成分分析PCA与鲁棒主成分分析RPCA

一、主成分分析

使用最广泛的数据降维算法,可用于高维数据处理,分析,压缩等。

降维:将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而达到提升数据处理速度的目的。

1. 前提

经典PCA假设数据被小的高斯噪声污染,在实际应用中一旦出现大的噪声或严重的离群点,会对PCA产生很大的影响,大大降低其性能。

2. 主要思想

假定给定的高维数据位于低维线性子空间附近,PCA的目的是有效,准确地估计该低维子空间。
[ 降维的同时尽量降低信息的损失 ]

3. 数学模型

假定给定的数据存储在矩阵 D ∈ R m × n D∈R^{m×n} DRm×n中,经典PCA研究的是找到一个低秩矩阵A,以使A和D之间的差异最小,即
min ⁡ A , E ∣ ∣ E ∣ ∣ F s . t . r a n k ( A ) ≤ r , D = A + E \min\limits_{A,E} ||E||_F \qquad s.t. \quad rank(A)≤r,D=A+E A,EminEFs.t.rank(A)rD=A+E
r < < m i n ( m , n ) r<<min(m,n) r<<min(m,n)是目标子空间的维数;
∣ ∣ ⋅ ∣ ∣ F ||\cdot||_F F是frobenius范数,矩阵元素绝对值的平方和再开平方

4. 算法推导

PCA的数学原理
PCA算法详解
PCA

为了解决在噪声大的情况下仍然能准确的恢复低秩矩阵A,进一步提出了Robust PCA.

二、鲁棒主成分分析

1. 适用情况

求解被高幅度尖锐噪声而非高斯分布噪声污染的信号分离问题。

当噪声矩阵E相对于A的秩而言足够稀疏,即使在存在大的噪声或离群值的情况下,可以从D=A+E中准确地恢复低秩矩阵A。

2. 核心思想

数据矩阵在最优化准则下可以表示为一个低秩矩阵和一个稀疏矩阵的叠加。
増广拉格朗日乘子法及其在约束优化问题中的应用

3. 数学模型

低秩矩阵恢复问题的数学模型可表示为
min ⁡ L , S r a n k ( L ) + λ ∣ ∣ S ∣ ∣ 0 s . t . D = L + S (1) \min\limits_{L,S} rank(L)+\lambda||S||_0 \qquad s.t. \quad D=L+S \tag{1} L,Sminrank(L)+λS0s.t.D=L+S(1)
其中 r a n k ( L ) rank(L) rank(L)表示矩阵的秩, ∣ ∣ S ∣ ∣ 0 ||S||_0 S0表示矩阵 S S S非零元的个数。

表示的含义是当低秩矩阵 L L L的秩和稀疏矩阵 S S S的0范数均取得最小值的时候,所得到的对应的 L L L S S S.

上式中秩函数、零范数都是非凸非线性的组合优化函数,模型1是非凸NP-难问题,直接求解很难。需要在一定条件下对其松弛,方可进行优化。

用矩阵的核函数来近似矩阵的秩,用矩阵的1范数来近似0范数。由范数知识可知,核函数是秩函数的凸包,1范数是0范数的凸包,所以上述NP-难问题松弛后可转化为凸优化问题:
min ⁡ L , S ∣ ∣ L ∣ ∣ ∗ + λ ∣ ∣ S ∣ ∣ 1 s . t . D = L + S (2) \min\limits_{L,S} ||L||_*+\lambda||S||_1 \qquad s.t. \quad D=L+S \tag{2} L,SminL+λS1s.t.D=L+S(2)
式(2)中的核范数是指矩阵 D D D的奇异值的和,主要用来约束 D D D的低秩属性, L 1 L_1 L1范数用来约束误差图像矩阵 S S S的稀疏性。

4. 求解方法

基于凸优化松弛模型 2,已经有很多算法被提出,其中包括増广拉格朗日乘子法(augmented Lagrange multiplier,ALM)、加速近端梯度法(accelerated proximal gradient,APG)和交替方向乘子法(alternating direction method of mutipliers,ADMM)等等。

<think>好的,用户想了解或实现张量主成分分析(TRPCA)及其凹凸变体的原理、应用或代码实现。首先,我需要整理TRPCA的基本概念,然后介绍凸和非凸变体的区别,接着讨论应用场景,最后给出代码实现的示例。 首先,TRPCA是传统RPCA在高维张量上的扩展,用于从含噪声或异常值的数据中恢复低秩结构和稀疏噪声。传统的RPCA处理矩阵数据,而TRPCA处理更高维的数据,比如视频、多光谱图像等。核心目标是将张量分解为低秩部分和稀疏部分,数学表达为:给定张量$\mathcal{T}$,分解为$\mathcal{L}$(低秩)和$\mathcal{S}$(稀疏),即$\mathcal{T} = \mathcal{L} + \mathcal{S}$[^1][^2]。 接下来是凸和非凸方法的区别。凸方法通常使用核范数(如张量核范数)来近似秩,保证全局最优解但计算量大。非凸方法通过更精确的秩估计(如张量截断核范数)提高效率,可能陷入局部最优但计算更高效。需要解释这些方法的数学形式,比如凸模型的目标函数可能包含核范数正则项,而非凸模型可能使用截断核范数或其他非凸正则项。 应用方面,TRPCA可用于视频去噪、医学图像处理、推荐系统等。需要具体例子,比如视频中的前景分离,或者MRI图像去噪。 代码实现部分,用户可能需要Python示例。可以使用Tensorly库进行张量操作,结合凸优化算法如ADMM。对于非凸变体,可能需要交替方向法或其他优化策略。需要展示如何将问题转化为优化步骤,并实现迭代求解。 此外,用户可能遇到的问题包括选择正则化参数、处理大规模数据时的计算效率,以及如何评估分解效果。需要提及参数调整方法,如交叉验证,或使用基于理论的结果,以及可能的加速技巧如随机化或并行计算。 最后,生成相关问题时要覆盖算法比较、参数选择、实际应用案例和性能评估方法。确保引用正确,根据提供的引用资料,可能引用到张量分解的相关论文或资源。 需要检查数学公式的格式是否正确,使用$$...$$和$...$,确保LaTeX语法无误,比如张量范数的符号是否正确。同时,代码部分要正确使用Python语法,特别是张量操作部分,可能需要使用numpy和tensorly库的函数。 总结回答结构:先介绍TRPCA原理,再分凸和非凸变体,接着应用,然后代码示例,最后注意事项和相关问题。</think>### 张量主成分分析(TRPCA)及其变体 #### 1. **基本原理** 张量主成分分析(TRPCA)旨在将高维数据张量$\mathcal{T} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_k}$分解为**低秩张量$\mathcal{L}$**和**稀疏噪声张量$\mathcal{S}$**,满足: $$ \mathcal{T} = \mathcal{L} + \mathcal{S} $$ - **低秩性**:$\mathcal{L}$通过张量秩(如Tucker秩、CP秩)约束。 - **稀疏性**:$\mathcal{S}$通过$\ell_1$范数约束。 #### 2. **凸非凸变体** ##### **凸方法** - **目标函数**: $$ \min_{\mathcal{L}, \mathcal{S}} \|\mathcal{L}\|_{*} + \lambda \|\mathcal{S}\|_1 \quad \text{s.t.} \quad \mathcal{T} = \mathcal{L} + \mathcal{S} $$ 其中$\|\cdot\|_{*}$为张量核范数(如沿各模态展开矩阵的核范数之和)[^1]。 - **特点**:全局收敛性保证,但计算复杂度高。 ##### **非凸方法(凹凸变体)** - **目标函数**: $$ \min_{\mathcal{L}, \mathcal{S}} \|\mathcal{L}\|_{r} + \lambda \|\mathcal{S}\|_1 \quad \text{s.t.} \quad \mathcal{T} = \mathcal{L} + \mathcal{S} $$ 其中$\|\cdot\|_{r}$为非凸秩近似(如截断核范数)。 - **特点**:计算效率更高,但可能收敛到局部最优解。 #### 3. **应用场景** - **视频去噪**:分离背景(低秩)和运动物体(稀疏)。 - **医学影像**:去除MRI图像中的脉冲噪声。 - **推荐系统**:从用户-物品-时间张量中提取稳定偏好。 #### 4. **代码实现(Python示例)** 使用**ADMM算法**实现凸TRPCA(依赖`numpy`和`tensorly`): ```python import numpy as np import tensorly as tl from tensorly.decomposition import tucker def convex_trpca(T, lambda_, max_iter=100, rho=1.0): n1, n2, n3 = T.shape L = np.zeros_like(T) S = np.zeros_like(T) Y = np.zeros_like(T) for _ in range(max_iter): # 更新L:低秩部分(Tucker分解) core, factors = tucker(T - S + Y/rho, rank=[min(n1, n2)]*n3) L = tl.tucker_to_tensor((core, factors)) # 更新S:稀疏部分(软阈值) S = np.sign(T - L + Y/rho) * np.maximum(np.abs(T - L + Y/rho) - lambda_/rho, 0) # 更新Y和对偶变量 Y = Y + rho * (T - L - S) return L, S ``` #### 5. **注意事项** - **参数选择**:正则化参数$\lambda$可通过交叉验证或理论公式(如$\lambda = 1/\sqrt{\max(n_i)}$)设定。 - **计算加速**:使用随机化张量分解或GPU加速。 - **评估指标**:恢复误差(如$\|\mathcal{L} - \mathcal{L}_{\text{true}}\|_F$)和稀疏性比率。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值