CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training论文速读

CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training

摘要

大规模图像-文本对数据集极大地促进了视觉语言预训练 (VLP) 模型的发展,该模型无需昂贵的注释即可实现零样本或少样本分类。然而,在医疗领域,数据的稀缺性仍然是开发强大的VLP模型的重大挑战。在本文中,我们通过一般提示将图像-标签对扩展为图像-文本对,并在放射学报告中利用多个图像和多个切片来解决胸部 X 射线中缺乏图像-文本数据的问题。我们还设计了两种对比损失,分别命名为 ICL 和 TCL,用于学习医学图像和报告的研究水平特征。
代码地址

方法

在这里插入图片描述
其中每个研究都有一对图像 (x1, x2) 和一对文本 (t 1, t 2)。如果一项研究有一张图像或一个文本,则进行数据增强以制作第二个示例。对于图像标签数据,从类标签生成两个不同的提示,如 (t 1, t 2)。使用采样对,编码器使用三种对比损失(MVS、ICL 和 TCL)进行训练。
损失函数:CLIP使用两个InfoNCE损耗的平均值
在这里插入图片描述
本文的MVS损失函数:
在这里插入图片描述

实验结果

数据划分策略
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值