CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-training
摘要
大规模图像-文本对数据集极大地促进了视觉语言预训练 (VLP) 模型的发展,该模型无需昂贵的注释即可实现零样本或少样本分类。然而,在医疗领域,数据的稀缺性仍然是开发强大的VLP模型的重大挑战。在本文中,我们通过一般提示将图像-标签对扩展为图像-文本对,并在放射学报告中利用多个图像和多个切片来解决胸部 X 射线中缺乏图像-文本数据的问题。我们还设计了两种对比损失,分别命名为 ICL 和 TCL,用于学习医学图像和报告的研究水平特征。
代码地址
方法
其中每个研究都有一对图像 (x1, x2) 和一对文本 (t 1, t 2)。如果一项研究有一张图像或一个文本,则进行数据增强以制作第二个示例。对于图像标签数据,从类标签生成两个不同的提示,如 (t 1, t 2)。使用采样对,编码器使用三种对比损失(MVS、ICL 和 TCL)进行训练。
损失函数:CLIP使用两个InfoNCE损耗的平均值
本文的MVS损失函数:
实验结果
数据划分策略