Boundary-Weighted Logit Consistency Improves Calibration of Segmentation Networks

Boundary-Weighted Logit Consistency Improves Calibration of Segmentation Networks

摘要

提出了一种新的正则化方法,利用随机变换中的logit一致性来防止在具有模糊标签的像素处产生过度自信的预测。该方法的边界加权扩展进一步提高了分割的准确性。实验结果表明,该方法在前列腺和心脏 MRI 分割中取得了最先进的校准效果,显著改善了预测的准确性和稳定性。研究结果表明,利用随机变换中的logit一致性作为正则化器,结合边界加权扩展,可以有效提高神经网络在图像分割任务中的校准效果,特别适用于医学图像分割领域。
代码地址

方法

Consistency Regularization at Pixel-Level

CR 中使用的监督损失和无监督损失的相对行为如何有助于提高校准性能。CR 中常见的选择是像素级的交叉熵损失 L s L_s Ls 和像素级的平方和损失 L c L_c Lc。对于这些选择,像素 j j j 的总损失可以写成如下形式:
在这里插入图片描述
其中, z j z_j zj z j ′ z_j^{\prime} zj分别是像素 j j j 处的 C C C 维逻辑向量,其中 g ( X ; θ , φ , ψ ) g(X; \theta, \varphi, \psi) g(X;θ,φ,ψ) g ( X ; θ , φ ′ , ψ ′ ) g(X; \theta, \varphi', \psi') g(X;θ,φ,ψ) 分别表示具有参数 ( θ , φ , ψ ) (\theta, \varphi, \psi) (θ,φ,ψ) ( θ , φ ′ , ψ ′ ) (\theta, \varphi', \psi') (θ,φ,ψ) 的模型的输出,下标 c c c表示类别。
L s L_s Ls 使得对于真实标签类别的预测概率接近于1,而其他所有类别的预测概率接近于0。即使对于由于图像对比度不足、部分体积效应或注释错误而应该模糊的像素,该损失函数也更倾向于低熵的预测。
在这里插入图片描述

Spatially Varying Weight for Consistency Regularization

在模糊像素中使用硬标签指向了该方法的一个简单改进。具体来说,在整体损失中,正则化项应该在预期存在更高像素模糊度和因此更高标签噪声时得到更高的权重。更高模糊度的自然候选者是接近标签边界的像素。提出了边界加权一致性正则化(BWCR):
在这里插入图片描述
其中, r j r^j rj 是像素 j j j 到最近边界的距离, λ ( r j ) \lambda(r_j) λ(rj)在远离标签边界时减小, R R R 是受正则化影响的边界区域的宽度。我们计算 r j = argmin c r j c r_j = \text{argmin}_c r_{jc} rj=argmincrjc,其中 r j c r_{jc} rjc是前景标签 c c c 的二值化分割在像素 j j j处的欧几里得距离变换的绝对值

实验结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值