机器学习——人工神经网络之发展历史(神经元数学模型、感知器算法)

 

目录

一、神经元的数学模型

​ 二、感知器算法(SVM算法前身)

1、目的

2、流程

>>>问题1:下图w和b的调整是什么意思?

3、算法的有效性验证

1)原算法

2)增广矩阵

3)修改后的算法

4)感知器算法的收敛定理

三、 人工智能的寒冬——感知器算法的局限性


一、神经元的数学模型

二、感知器算法(SVM算法前身)

1、目的

2、流程

这个算法的思想是一个一个样本进行训练,但是SVM是从整体样本来看的,将其转化为一个大的优化问题,再进行求解

>>>问题1:下图w和b的调整是什么意思?

答:这里以y-=1但是没有正确分类的情况为例,y=1,没有正确分类的情况类似

3、算法的有效性验证

1)原算法

2)增广矩阵

3)修改后的算法

4)感知器算法的收敛定理

证明:

 

三、 人工智能的寒冬——感知器算法的局限性

 

以上说的感知器算法其实只是两层神经网络模型,非常有局限性,但是通过三层和多层神经网络模型可以很好的解决这个问题,那三层和多层的神经网络是怎样的呢? 参考文章:《机器学习——人工神经网络之多层神经网络(多层与三层)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有情怀的机械男

你的鼓励将是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值