【InternLM 实战营第二期笔记7】OpenCompass 大模型评测实战

本文介绍了如何使用OpenCompass评测工具来测试InternLM2-Chat-1.8B模型在C-Eval数据集上的表现,涉及数据准备、配置参数和调试命令。详细步骤包括设置环境、配置tokenizer和模型参数,以及执行评测并分析结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

笔记

OpenCompass pipeline

基础作业

数据准备

启动评测 (10% A100 8GB 资源)

评测结果


【视频地址】:OpenCompass 大模型评测实战_哔哩哔哩_bilibili
【课程文档】:Tutorial/opencompass/readme.md at camp2 · InternLM/Tutorial · GitHub
【课程作业】:Tutorial/opencompass/homework.md at camp2 · InternLM/Tutorial · GitHub


笔记

OpenCompass是一个评测平台。

如何评测?

长文本评测

提示词工程

OpenCompass pipeline

基础作业

  • 使用 OpenCompass 评测 internlm2-chat-1_8b 模型在 C-Eval 数据集上的性能

数据准备

查看支持的数据集和模型

列出所有跟 InternLM 及 C-Eval 相关的配置:

启动评测 (10% A100 8GB 资源)

确保按照上述步骤正确安装 OpenCompass 并准备好数据集后,可以通过以下命令评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。由于 OpenCompass 默认并行启动评估过程,我们可以在第一次运行时以 --debug 模式启动评估,并检查是否存在问题。在 --debug 模式下,任务将按顺序执行,并实时打印输出。

启动评测命令&comments

python run.py
--datasets ceval_gen \
--hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace 模型路径
--tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace tokenizer 路径(如果与模型路径相同,可以省略)
--tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \  # 构建 tokenizer 的参数
--model-kwargs device_map='auto' trust_remote_code=True \  # 构建模型的参数
--max-seq-len 1024 \  # 模型可以接受的最大序列长度
--max-out-len 16 \  # 生成的最大 token 数
--batch-size 2  \  # 批量大小
--num-gpus 1  # 运行模型所需的 GPU 数量
--debug

评测结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值