CUDA——编写并调用自定义CUDA Pytorch算子

本文介绍了如何通过Python的setup工具编译PyTorch自定义CUDA算子,包括编写CUDA核函数、主函数,设置编译配置文件,以及在Python中调用预编译的CUDA运算。这种方式具有编译简单、复用性强的优点。
摘要由CSDN通过智能技术生成

0. CUDA算子编译方式

编译方式主要分为三种:

  1. 基于pytorchjit(每次运行代码时编译,多次执行即多次编译);
  2. 基于python自身的setup(在安装算子包时手动编译一次,后续可重复使用);
  3. 基于C++cmake(一次编译,可重复使用;但存在较多CmakeList中配置问题需要解决);

在这里,我推荐选择第二种基于python自身的setup的编译方式,该方式具有编译过程简单、快速且可以复用的特点。

因此,本文将主要setup的编译方式进行讲解。

1. 编写CUDA核函数和主函数

  • 首先我们需要编写最基本的CUDA核函数:
__global__ void add2_kernel(float* c,
                            const float* a,
                            const float* b,
                            int n) {
    for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
            i < n; i += gridDim.x * blockDim.x) {
        c[i] = a[i] + b[i];
    }
}
  • 主函数:就是输入Tensor,然后调用核函数的地方:
void launch_add2(float* c,
                 const float* a,
                 const float* b,
                 int n) {
    dim3 grid((n + 1023) / 1024);
    dim3 block(1024);
    add2_kernel<<<grid, block>>>(c, a, b, n);
}

2. 编写基于Setup编译的配置文件

from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension

setup(
    name="add2",
    include_dirs=["include"],
    ext_modules=[
        CUDAExtension(
            "add2",		# 最终库的名称
            ["pytorch/add2_ops.cpp", "kernel/add2_kernel.cu"],	# 算子
        )
    ],
    cmdclass={
        "build_ext": BuildExtension
    }
)

3. 在Python中调用编译好的CUDA算子

import time
import torch
import sobel

img_size = (640,640)
a = torch.rand(img_size, device="cuda:0")	# input
b = a.clone()		# output
sobel.torch_launch_sobel(a, b, a.shape[0], a.shape[1])

参考文献:

PyTorch中,我们可以使用C++或CUDA编写自定义算子,并将其发布为PyTorch的扩展,以便在PyTorch中使用。下面是发布自定义算子的一般步骤: 1. 编写C++或CUDA代码实现自定义算子。 2. 使用PyTorch提供的C++ API或CUDA API将算子封装为PyTorch扩展,生成动态链接库文件。可以使用setup.py或CMake来构建和安装扩展。 3. 在Python中导入扩展,并使用torch.ops.register_custom_op_symbolic()函数注册算子。 4. 在Python中使用自定义算子。 下面是一个简单的示例,演示了如何发布一个简单的自定义算子。 1. 编写C++代码实现自定义算子。假设我们要实现一个名为mymul的算子,它可以计算两个张量的乘积。以下是mymul的C++实现: ```c++ #include <torch/extension.h> torch::Tensor mymul(torch::Tensor x, torch::Tensor y) { return x * y; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("mymul", &mymul, "My multiply operation"); } ``` 2. 使用PyTorch提供的API将算子封装为扩展。可以使用setup.py或CMake来构建和安装扩展。以下是使用setup.py构建和安装扩展的示例: ```python from setuptools import setup from torch.utils.cpp_extension import BuildExtension, CUDAExtension setup(name='mymul', ext_modules=[ CUDAExtension('mymul_cuda', [ 'mymul_cuda.cpp', 'mymul_cuda_kernel.cu', ]), CppExtension('mymul_cpp', ['mymul.cpp']), ], cmdclass={'build_ext': BuildExtension}) ``` 3. 在Python中导入扩展,并使用torch.ops.register_custom_op_symbolic()函数注册算子。以下是在Python中使用mymul的示例: ```python import torch from torch.utils.cpp_extension import load # 导入扩展 mymul_cpp = load('mymul_cpp', ['mymul.cpp']) # 注册算子 torch.ops.load_library(mymul_cpp.__file__) torch.ops.register_custom_op_symbolic('mymul_cpp::mymul', 2) # 创建输入张量 x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5, 6]) # 使用自定义算子 z = torch.ops.mymul_cpp.mymul(x, y) print(z) ``` 在上面的示例中,我们首先导入了扩展,并使用torch.ops.load_library()函数加载它。然后,我们使用torch.ops.register_custom_op_symbolic()函数注册算子,指定算子的名称和输入参数的数量。最后,我们创建了两个输入张量x和y,并使用torch.ops.mymul_cpp.mymul()函数调用自定义算子,计算x和y的乘积。 注意,以上仅为一般步骤示例,实际上发布自定义算子需要编写更多的代码和配置文件,具体实现需要根据具体需求和环境进行调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值