拉普拉斯变换解微分方程

拉普拉斯变换解微分方程

拉氏变换解微分步骤

引言

  • 拉普拉斯变换在求解线性微积分方程时是很有用的
  • 利用拉普拉斯变换的微分和积分性质,对微积分方程的每一项做拉普拉斯变换
  • 使时域的微积分方程变成了域的代数方程,且初始条件自动包含在内
  • 求解s域的代数方程,然后再通过反变换将结果转换回时域

拉氏变换解微分方程

用拉普拉斯变换求解微分方程

  • 初始条件为 v v v(0)=1, v ′ v^{'} v(0)=-2

d 2 v ( t ) d t 2 + 6 d v ( t ) d t + 8 v ( t ) = 2 u ( t ) \frac{\mathrm{d}^2v(t)}{\mathrm{d}t^2}+6\frac{\mathrm{d}v(t)}{\mathrm{d}t}+8v(t)=2u(t) dt2d2v(t)+6dtdv(t)+8v(t)=2u(t)

对微分方程的两边做拉普拉斯变换,由拉氏变换的线性性质可得:

[ s 2 V ( s ) − s v ( 0 ) − v ′ ( 0 ) ] + 6 [ s V ( s ) − v ( 0 ) ] + 8 V ( s ) = 2 s [s^2V(s)-sv(0)-v^{\prime}(0)]+6[sV(s)-v(0)]+8V(s)=\frac2s [s2V(s)sv(0)v(0)]+6[sV(s)v(0)]+8V(s)=s2

代人初始值 v v v(0)=1, v ′ v^{'} v(0)=-2,有:

s 2 V ( s ) − s + 2 + 6 s V ( s ) − 6 + 8 V ( s ) = 2 s s^2V(s)-s+2+6sV(s)-6+8V(s)=\frac2s s2V(s)s+2+6sV(s)6+8V(s)=s2

( s 2 + 6 s + 8 ) V ( s ) = s + 4 + 2 s = s 2 + 4 s + 2 s (s^2+6s+8)V(s)=s+4+\frac2s=\frac{s^2+4s+2}s (s2+6s+8)V(s)=s+4+s2=ss2+4s+2

因此:

V ( s ) = s 2 + 4 s + 2 s ( s + 2 ) ( s + 4 ) = A s + B s + 2 + C s + 4 V(s)=\frac{s^2+4s+2}{s(s+2)(s+4)}=\frac As+\frac B{s+2}+\frac C{s+4} V(s)=s(s+2)(s+4)s2+4s+2=sA+s+2B+s+4C

式中

A = s V ( s ) ∣ s = 0 = s 2 + 4 s + 2 ( s + 2 ) ( s + 4 ) ∣ s = 0 = 2 ( 2 ) ( 4 ) = 1 4 A=\left.sV(s)\mid_{s=0}=\frac{s^2+4s+2}{(s+2)(s+4)}\right|_{s=0}=\frac2{(2)(4)}=\frac14 A=sV(s)s=0=(s+2)(s+4)s2+4s+2 s=0=(2)(4)2=41

B = ( s + 2 ) V ( s ) ∣ s = − 2 = s 2 + 4 s + 2 s ( s + 4 ) ∣ s = − 2 = − 2 ( − 2 ) ( 2 ) = 1 2   B\left.=(s+2)V(s)\mid_{s=-2}=\frac{s^2+4s+2}{s(s+4)}\left.\right|_{s=-2}=\frac{-2}{(-2)(2)}=\frac12\right.  B=(s+2)V(s)s=2=s(s+4)s2+4s+2s=2=(2)(2)2=21 

C = ( s + 4 ) V ( s ) ∣ s = − 4 = s 2 + 4 s + 2 s ( s + 2 ) ∣ s = − 4 = 2 ( − 4 ) ( − 2 ) = 1 4 C=(s+4)V(s)\left.\right|_{s=-4}=\frac{s^2+4s+2}{s\left(s+2\right)}\left.\right|_{s=-4}=\frac2{(-4)(-2)}=\frac14 C=(s+4)V(s)s=4=s(s+2)s2+4s+2s=4=(4)(2)2=41

因此:

V ( s ) = 1 4 s + 1 2 s + 2 + 1 4 s + 4 V(s)=\frac{\frac14}s+\frac{\frac12}{s+2}+\frac{\frac14}{s+4} V(s)=s41+s+221+s+441

求拉普拉斯反变换,得:

υ ( t ) = 1 4 ( 1 + 2 e − 2 t + e − 4 t ) u ( t ) \upsilon(t)=\frac14(1+2e^{-2t}+e^{-4t})u(t) υ(t)=41(1+2e2t+e4t)u(t)

求微积分方程的响应

  • 求微积分方程的响应y(t)

d y d t + 5 y ( t ) + 6 ∫ 0 t y ( τ ) d τ = u ( t ) , y ( 0 ) = 2 \frac{dy}{dt}+5y(t)+6\int_0^ty(\tau)d\tau=u(t),\quad y(0)=2 dtdy+5y(t)+60ty(τ)dτ=u(t),y(0)=2

对微积分方程的两边做拉普拉斯变换,由拉氏变换的线性性质可得:

[ s Y ( s ) − y ( 0 ) ] + 5 Y ( s ) + 6 s Y ( s ) = 1 s [sY(s)-y(0)]+5Y(s)+\frac6sY(s)=\frac1s [sY(s)y(0)]+5Y(s)+s6Y(s)=s1

代人y(0)=2,两边乘以s,得:

Y ( s ) ( s 2 + 5 s + 6 ) = 1 + 2 s Y(s)(s^2+5s+6)=1+2s Y(s)(s2+5s+6)=1+2s

Y ( s ) = 2 s 2 + 1 ( s 2 + 2 ) ( s 2 + 3 ) = A s 2 + 2 + B s 2 + 3 Y(s)=\frac{2s^2+1}{(s^2+2)(s^2+3)}=\frac A{s^2+2}+\frac B{s^2+3} Y(s)=(s2+2)(s2+3)2s2+1=s2+2A+s2+3B

式中

A = ( s + 2 ) Y ( s ) ∣ s = − 2 = 2 s + 1 s + 3 ∣ s = − 2 = − 3 1 = − 3 A=(s+2)Y(s)\left.\right|_{s=-2}=\left.\frac{2s+1}{s+3}\right|_{s=-2}=\frac{-3}1=-3 A=(s+2)Y(s)s=2=s+32s+1 s=2=13=3

B = ( s + 3 ) Y ( s ) ∣ s = − 3 = 2 s + 1 s + 2 ∣ s = − 3 = − 5 − 1 = 5 B=(s+3)Y(s)\left.\right|_{s=-3}=\frac{2s+1}{s+2}\left.\right|_{s=-3}=\frac{-5}{-1}=5 B=(s+3)Y(s)s=3=s+22s+1s=3=15=5

因此

Y ( s ) = − 3 s 2 + 2 + 5 s 2 + 3 Y(s)=\frac{-3}{s^2+2}+\frac5{s^2+3} Y(s)=s2+23+s2+35

其反变换为:

y ( t ) = ( − 3 e − 2 t + 5 e − 3 t ) u ( t ) y(t)=(-3e^{-2t}+5e^{-3t})u(t) y(t)=(3e2t+5e3t)u(t)

  • 12
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值