卷积积分的计算

卷积积分

卷积

定义

两个信号的卷积过程:将其中一个信号按时间反转、平移,并与第二个信号逐点相乘,然后对其结果求积分

卷积一般形式

卷积的意思就是折叠,它提供了观察和描述物理系统的方法

比如,已知系统的冲激响应h(t),求解系统对于激励x(t)的响应y(t),可通过卷积积分实现,系统的响应为:

y ( t ) = ∫ − ∞ ∞ x ( λ ) h ( t − λ )   d λ   y(t)=\int_{-\infty}^{\infty}x(\lambda)h(t-\lambda)\mathrm{~}d\lambda  y(t)=x(λ)h(tλ) dλ 

或简写成:

y ( t ) = x ( t ) ∗ h ( t ) y(t)=x(t)*h(t) y(t)=x(t)h(t)

  • λ是一个虚拟变量,*号表示卷积
  • 两式表明输出等于输入与单位冲激响应的卷积

卷积交换

卷积过程是可以交换的:

y ( t ) = x ( t ) ∗ h ( t ) = h ( t ) ∗ x ( t ) y(t)=x(t)*h(t)=h(t)*x(t) y(t)=x(t)h(t)=h(t)x(t)

即:

y ( t ) = ∫ − ∞ ∞ x ( λ ) h ( t − λ ) d λ = ∫ − ∞ ∞ h ( λ ) x ( t − λ ) d λ   y(t)=\int_{-\infty}^{\infty}x(\lambda)h(t-\lambda)d\lambda=\int_{-\infty}^{\infty}h(\lambda)x(t-\lambda)d\lambda  y(t)=x(λ)h(tλ)dλ=h(λ)x(tλ)dλ 

  • 这表明两个函数卷积的顺序是不重要的

简化卷积

如果系统有如下两个性质,那么卷积积分可以简化。首先,如果当 t<0时,x(t)=0,那么:

y ( t ) = ∫ − ∞ ∞ x ( λ ) h ( t − λ ) d λ = ∫ 0 ∞ x ( λ ) h ( t − λ ) d λ \begin{aligned}y(t)&=\int_{-\infty}^\infty x(\lambda)h(t-\lambda)d\lambda=\int_0^\infty x(\lambda)h(t-\lambda)d\lambda\end{aligned} y(t)=x(λ)h(tλ)dλ=0x(λ)h(tλ)dλ

其次,如果系统的冲激响应是因果的(即当 t<0时,h(t)=0),那么对于t-λ<0有h(t-λ)=0,所以上式变为:

y ( t ) = h ( t ) ∗ x ( t ) = ∫ 0 t x ( λ ) h ( t − λ ) d λ \color{red}\begin{aligned}y(t)=h(t)*x(t)=\int_0^tx(\lambda)h(t-\lambda)d\lambda\end{aligned} y(t)=h(t)x(t)=0tx(λ)h(tλ)dλ

卷积积分性质

卷积性质

x ( t ) ∗ h ( t ) = h ( t ) ∗ x ( t ) ( 可交换性 ) x(t)* h(t)=h(t)*x(t)(\text{可交换性}) x(t)h(t)=h(t)x(t)(可交换性)

f ( t ) ∗ [ x ( t ) + y ( t ) ] = f ( t ) ∗ x ( t ) + f ( t ) ∗ y ( t ) ( 分配性 ) f(t)*\begin{bmatrix}x(t)+y(t)\end{bmatrix}=f(t)*x(t)+f(t)*y(t)(\text{分配性}) f(t)[x(t)+y(t)]=f(t)x(t)+f(t)y(t)(分配性)

f ( t ) ∗ [ x ( t ) ∗ y ( t ) ] = [ f ( t ) ∗ x ( t ) ] ∗ y ( t ) ( 结合性 ) f(t)*\left[x(t)*y(t)\right]=\left[f(t)*x(t)\right]*y(t)\left(\text{结合性}\right) f(t)[x(t)y(t)]=[f(t)x(t)]y(t)(结合性)

f ( t ) ∗ δ ( t ) = ∫ − ∞ ∞ f ( λ ) δ ( t − λ ) d λ = f ( t ) \begin{aligned}f(t)*\delta(t)&=\int_{-\infty}^{\infty}f(\lambda)\delta(t-\lambda)d\lambda=f(t)\end{aligned} f(t)δ(t)=f(λ)δ(tλ)dλ=f(t)

f ( t ) ∗ δ ( t − t o ) = f ( t − t o ) f(t)*\delta(t-t_o)=f(t-t_o) f(t)δ(tto)=f(tto)

f ( t ) ∗ δ ′ ( t ) = ∫ − ∞ ∞ f ( λ ) δ ′ ( t − λ ) d λ = f ′ ( t ) f(t)*\delta'(t)=\int_{-\infty}^{\infty}f(\lambda)\delta'(t-\lambda)d\lambda=f'(t) f(t)δ(t)=f(λ)δ(tλ)dλ=f(t)

f ( t ) ∗ u ( t ) = ∫ − ∞ ∞ f ( λ ) u ( t − λ ) d λ = ∫ − ∞ t f ( λ ) d λ \begin{aligned}f(t)*u(t)=\int_{-\infty}^{\infty}f(\lambda)u(t-\lambda)d\lambda=\int_{-\infty}^{t}f(\lambda)d\lambda\end{aligned} f(t)u(t)=f(λ)u(tλ)dλ=tf(λ)dλ

拉普拉斯变换与卷积积分

拉普拉斯变换和卷积积分联系

  • 首先建立拉普拉斯变换和卷积积分之间的联系

给定两个函数f 1 _1 1(t)和f 2 _2 2(t)及其相应的拉普拉斯变换F 1 _1 1(s)和F 2 _2 2(s),它们的卷积是:

F 1 ( s ) F 2 ( s ) = L [ f 1 ( t ) ∗ f 2 ( t ) ] \color{red}\begin{aligned}F_1(s)F_2(s)=\mathcal{L}[f_1(t)*f_2(t)]\end{aligned} F1(s)F2(s)=L[f1(t)f2(t)]

  • 这表明时域的卷积等同于s域的相乘

比如 x ( t ) = 4 e − t x\left(t\right)=4\mathrm{e}^{-t} x(t)=4et h ( t ) = 5 e − 2 t h(t)=5e^{-2t} h(t)=5e2t,由上式可得:

h ( t ) ∗ x ( t ) = L − 1 [ H ( s ) X ( s ) ] = L − 1 [ ( 5 s + 2 )  ⁣ ⁣ ( 4 s + 1 ) ] h(t)*x(t)=\mathcal{L}^{-1}[H(s)X(s)]=\mathcal{L}^{-1}{\left[\left(\frac5{s+2}\right)\!\!(\frac4{s+1})\right]} h(t)x(t)=L1[H(s)X(s)]=L1[(s+25)(s+14)]

= L − 1 [ 20 s + 1 + − 20 s + 2 ] = 20 ( e − t − e − 2 t ) , t ⩾ 0 =L^{-1}\left[\frac{20}{s+1}+\frac{-20}{s+2}\right]=20\left(\mathrm{e}^{-t}-\mathrm{e}^{-2t}\right),\quad t\geqslant0 =L1[s+120+s+220]=20(ete2t),t0

计算卷积积分的步骤

计算步骤

  • 折叠:取h(λ)关于纵坐标的镜像,得到h(-λ)
  • 移位:将h(-λ)移动或延迟t,得到h(t-λ)
  • 相乘:求出h(t-λ)和x(λ)的乘积
  • 积分:对于给定的时间t,计算乘积h(t-λ)x(λ)在区间0<λ<t的面积,得到y(t)

计算两个信号的卷积

求两个信号的卷积

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 按照计算卷积积分的四个步骤计算y(t)=x 1 _1 1(t)*x 2 _2 2(t)

首先折叠x 1 _1 1(t),然后平移t,如图所示

                  折叠x(λ)                                                               将x(-λ)平移t

              折叠x$_1$(λ)                                                               将x$_1$(-λ)平移t

对于不同的t值,将两个函数相乘,然后积分确定重叠区域的面积

0<t<1时,如图a所示,两个函数没有交叠。因此:

y ( t ) = x 1 ( t ) ⋆ x 2 ( t ) = 0 , 0 < t < 1 y(t)=x_1\left(t\right)\star x_2\left(t\right)=0,\quad0<t<1 y(t)=x1(t)x2(t)=0,0<t<1

1<t<2时,如图b所示,两个信号在1~t之间交叠

y ( t ) = ∫ 1 t ( 2 ) ( 1 )   d λ = 2 λ ∣ 1 t = 2 ( t − 1 ) , 1 < t < 2   y(t)=\left.\int_1^t(2)(1)\mathrm{~}d\lambda\right.=2\lambda\left.\left|_1^t\right.=2(t-1),\quad1<t<2\right.  y(t)=1t(2)(1) dλ=2λ 1t=2(t1),1<t<2 

2<t<3时,两个信号在(t-1)~t之间完全交叠,如图c所示。容易看出曲线内的面积为2。即:

y ( t ) = ∫ t − 1 t ( 2 ) ( 1 ) d λ = 2 λ ∣ t − 1 t = 2 , 2 < t < 3   y(t)=\left.\int_{t-1}^t(2)(1)d\lambda=\left.2\lambda\right.\right|_{t-1}^t=\left.2,\quad2<t<3\right.  y(t)=t1t(2)(1)dλ=2λ t1t=2,2<t<3 

3<t<4时,两个信号在(t-1)~3之间有交叠,如图d所示

y ( t ) = ∫ t − 1 3 2 × 1 d λ = 2 λ ∣ t − 1 3 = 2 ( 3 − t + 1 ) = 8 − 2 t , 3 < t < 4 y(t)=\int_{t-1}^32\times1\mathrm{d}\lambda=2\lambda\Bigg|_{t-1}^3=2(3-t+1)=8-2t,\quad3<t<4 y(t)=t132×1dλ=2λ t13=2(3t+1)=82t,3<t<4

t>4时,两个信号没有交叠,见图e,并且:

y ( t ) = 0 , t > 4 y(t)=0,\quad t>4 y(t)=0,t>4

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

联立:

y ( t ) = { 0 , 0 ≤ t ≤ 1 2 t − 2 , 1 ≤ t ≤ 2 2 , 2 ≤ t ≤ 3 8 − 2 t , 3 ≤ t ≤ 4 0 , t ≥ 4 y(t)=\begin{cases}0,&0\leq t\leq1\\2t-2,&1\leq t\leq2\\2,&2\leq t\leq3\\8-2t,&3\leq t\leq4\\0,&t\geq4&\end{cases} y(t)= 0,2t2,2,82t,0,0t11t22t33t4t4

即得草图

                                           信号x(t)和x(t)的卷积

                                       信号x$_1$(t)和x$_2$(t)的卷积

式中y(t)是连续的,这可以用于检验当t从一个区域向另一区域移动时的结果

用图解法计算卷积

  • 用图解法计算g(t)和u(t)的卷积

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

方法1

假设折叠g(t),如图a所示,然后将折叠后的 g(t)平移t,如图b所示

  • 因当0<t<1时、g(t)=t,故当0<t-λ<1时候,g(t-λ)=t-λ
  • 当t<0时,两个函数没有交叠,因此y(0)=0
  • 当0<t<1时,g(t-λ)和u(λ)在0~t之间交叠,如图b所示。因此:

y ( t ) = ∫ 0 t 1 × ( t − λ ) d λ = ( t λ − 1 2 λ 2 ) ∣ 0 t = t 2 − t 2 2 = t 2 2 , 0 ⩽ t ⩽ 1 y(t)=\int_0^t1\times(t-\lambda)\mathrm{d}\lambda=\left.\left(t\lambda-\frac12\lambda^2\right)\right|_0^t=t^2-\frac{t^2}2=\frac{t^2}2,\quad 0\leqslant t\leqslant1 y(t)=0t1×(tλ)dλ=(tλ21λ2) 0t=t22t2=2t2,0t1

  • 当t>1时,两个函数在(t-1)~t之间完全交叠,如图c所示。因此:

y ( t ) = ∫ t − 1 t 1 × ( t − λ ) d λ = ( t λ − 1 2 λ 2 ) ∣ t − 1 t = 1 2 , t ⩾ 1 y(t)=\int_{t-1}^t1\times(t-\lambda)\mathrm{d}\lambda=\left.\left(t\lambda-\frac{1}{2}\lambda^2\right)\right|_{t-1}^t=\frac{1}{2},\quad t\geqslant1 y(t)=t1t1×(tλ)dλ=(tλ21λ2) t1t=21,t1

联立

y ( t ) = { 1 2 t 2 , 0 ⩽ t ⩽ 1 1 2 , t ⩾ 1 y(t)=\begin{cases}\dfrac{1}{2}t^2,&0\leqslant t\leqslant1\\[2ex]\dfrac{1}{2},&t\geqslant1\end{cases} y(t)= 21t2,21,0t1t1

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

                                                             信号g(t)和u(t)的卷积,折叠g(t)

方法2

假设不折叠g(t),而折叠单位阶跃函数u(t),如图a所示

然后将折叠后的u(t)平移t,如图b所示

因t>0时,u(t)=1,t-λ>0或λ<t时,u(t-λ)=1,所以两个函数在0~t内交叠,因此:

y ( t ) = ∫ 0 t 1 λ d λ = 1 2 λ 2 ∣ 0 t = t 2 2 , 0 ⩽ t ⩽ 1 y(t)=\int_0^t1\lambda\mathrm{d}\lambda=\left.\frac{1}{2}\lambda^2\right|_0^t=\frac{t^2}{2},\quad0\leqslant t\leqslant1 y(t)=0t1λdλ=21λ2 0t=2t2,0t1

当t>1时,这两个函数在0~1之间交叠,如图c所示。因此:

y ( t ) = ∫ 0 1 1 λ d λ = 1 2 λ 2 ∣ 0 t = 1 2 , t ⩾ 1 y(t)=\int_0^11\lambda\mathrm{d}\lambda=\left.\frac12\lambda^2\right|_0^t=\frac12,\quad t\geqslant1 y(t)=011λdλ=21λ2 0t=21,t1

联立:

y ( t ) = { 1 2 t 2 , 0 ⩽ t ⩽ 1 1 2 , t ⩾ 1 y(t)=\begin{cases}\dfrac{1}{2}t^2,&0\leqslant t\leqslant1\\[2ex]\dfrac{1}{2},&t\geqslant1\end{cases} y(t)= 21t2,21,0t1t1

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

                                                   信号g(t)和u(t)的卷积,折叠u(t)

两种方法得到的结果相同,折叠单位阶跃函数u(t)更简单

使用卷积求激励产生的响应

  • RL 电路,使用卷积积分求出激励产生的响应i 0 _0 0(t)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 使用卷积积分来求解 is(t)产生的响应 io(t)

  • 用卷积积分或图解法计算卷积,也可以用s域方法求解电流 io(t)

  • 首先要知道电路的单位冲激响应h(t)

    外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

在s域,对电路应用分流原理,得:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

                             s域等效电路

I o = 1 s + 1 I s I_\text{o}=\frac{1}{s+1}I_s Io=s+11Is

因此:

H ( s ) = I o I s = 1 s + 1 H(s)=\frac{I_{o}}{I_{s}}=\frac{1}{s+1} H(s)=IsIo=s+11

其拉普拉斯反变换为:

h ( t ) = e − t u ( t ) h(t)=\mathrm{e}^{-t}u(t) h(t)=etu(t)

即得电路的冲激响应h(t)的图形

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

                       冲激响应h(t)的图形

为了直接用卷积积分,利用s域中的响应:

I o ( s ) = H ( s ) I s ( s ) I_{\mathrm{o}}(s)=H(s)I_{s}(s) Io(s)=H(s)Is(s)

对于给出的激励is(t),有:

i s ( t ) = u ( t ) − u ( t − 2 ) i_{s}(t)=u(t)-u(t-2) is(t)=u(t)u(t2)

因此:

i o ( t ) = h ( t ) ∗ i s ( t ) = ∫ 0 t i s ( λ ) h ( t − λ ) d λ = ∫ 0 t [ u ( λ ) − u ( λ − 2 ) ] e − ( t − λ ) d λ   i_{o}(t)=h(t)*i_{s}(t)=\int_{0}^{t}i_{s}(\lambda)h(t-\lambda)\mathrm{d}\lambda=\int_{0}^{t}\Big[u(\lambda)-u(\lambda-2)\big]\mathrm{e}^{-(t-\lambda)}\mathrm{d}\lambda  io(t)=h(t)is(t)=0tis(λ)h(tλ)dλ=0t[u(λ)u(λ2)]e(tλ)dλ 

  • 因为当0<λ<2时,u(λ-2)=0,所以与u(λ)相关的积分函数对任意λ>0都是非0的
  • 而涉及u(λ-2)的积分函数仅当λ>2时非0
  • 计算积分的最好方法是两部分分开处理,当0<λ<2时:

i o ′ ( t ) = ∫ 0 t 1 × e − ( t − λ ) d λ = e − t ∫ 0 t 1 × e λ d λ = e − t ( e t − 1 ) = 1 − e − t , 0 < t < 2 i_{o}^{'}(t)=\int_{0}^{t}1\times\mathrm{e}^{-(t-\lambda)}\mathrm{d}\lambda=\mathrm{e}^{-t}{\int_{0}^{t}1\times\mathrm{e}^{\lambda}\mathrm{d}\lambda=\mathrm{e}^{-t}(\mathrm{e}^{t}-1)=1-\mathrm{e}^{-t},\quad0<t<2} io(t)=0t1×e(tλ)dλ=et0t1×eλdλ=et(et1)=1et,0<t<2

当t >2时:

i o ′ ′ ( t ) = ∫ 2 t 1 × e − ( t − λ ) d λ = e − t ∫ 2 t e λ d λ = e − t ( e t − e 2 ) = 1 − e 2 e − t , t > 2 i_{o}^{\prime\prime}(t)=\int_{2}^{t}1\times\mathrm{e}^{-(t-\lambda)}\mathrm{d}\lambda=\mathrm{e}^{-t}\int_{2}^{t}\mathrm{e}^{\lambda}\mathrm{d}\lambda=\mathrm{e}^{-t}(\mathrm{e}^{t}-\mathrm{e}^{2})=1-\mathrm{e}^{2}\mathrm{e}^{-t},\quad t>2 io′′(t)=2t1×e(tλ)dλ=et2teλdλ=et(ete2)=1e2et,t>2

i o ′ i o ′ ′ i_{o}^{'}\quad i_{o}^{''} ioio′′带入 i o i_{o} io,得:

i o ( t ) = i o ′ ( t ) − i o ′ ′ ( t ) = ( 1 − e − t ) [ u ( t − 2 ) − u ( t ) ] − ( 1 − e 2 e − t ) u ( t − 2 ) i_\mathrm{o}(t)=i_\mathrm{o}^{\prime}(t)-i_\mathrm{o}^{\prime\prime}(t)=(1-\mathrm{e}^{-t}){\left[u(t-2)-u(t)\right]}-(1-\mathrm{e}^2\mathrm{e}^{-t})u(t-2) io(t)=io(t)io′′(t)=(1et)[u(t2)u(t)](1e2et)u(t2)

= { 1 − e − t A , 0 < t < 2 ( e 2 − 1 ) e − t A , t > 2 \left.=\left\{\begin{matrix}1-\mathrm{e}^{-t}\mathrm{A},&\quad0<t<2\\(\mathrm{e}^{2}-1)\mathrm{e}^{-t}\mathrm{A},&\quad t>2\end{matrix}\right.\right. ={1etA,(e21)etA,0<t<2t>2

评价结果

为了应用图解法,折叠is(t)并平移t,如图a所示

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

当0<t<2时,is(t-λ)和h(t)之间的交叠区间为0~t,因此:

i o ( t ) = ∫ 0 t 1 e − λ d λ = − e − λ ∣ 0 t = ( 1 − e − λ ) A , 0 ⩽ t ⩽ 2 i_{o}(t)=\int_{0}^{t}1\mathrm{e}^{-\lambda}\mathrm{d}\lambda=-\left.\mathrm{e}^{-\lambda}\right|_{0}^{t}=(\mathbf{1}-\mathrm{e}^{-\lambda})\mathbf{A},\quad0\leqslant t\leqslant2 io(t)=0t1eλdλ=eλ 0t=(1eλ)A,0t2

当t>2时,如图b所示,两个函数从(t-2)~t交叠。因此:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

i 0 ( t ) = ∫ t − 2 t 1 × e − λ d λ = − e − λ ∣ t − 2 t = − e − t + e − ( t − 2 ) = ( e 2 − 1 ) e − t A , t ⩾ 0 i_{_0}(t)=\int_{t-2}^{t}1\times\mathrm{e}^{-\lambda}\mathrm{d}\lambda=-\left.\mathrm{e}^{-\lambda}\right|_{t-2}^{t}=-\mathrm{e}^{-t}+\mathrm{e}^{-(t-2)}=(\mathrm{e}^2-1)\mathrm{e}^{-t}\mathrm{A},\quad t\geqslant0 i0(t)=t2t1×eλdλ=eλ t2t=et+e(t2)=(e21)etA,t0

联立响应为:

i o = { ( 1 − e − λ ) A , 0 ⩽ t ⩽ 2 ( e 2 − 1 ) e − t A , t ⩾ 2 \left.i_{\mathrm{o}}=\left\{\begin{aligned}(\mathbf{1}-\mathbf{e}^{-\lambda})\mathbf{A},\quad&0\leqslant t\leqslant2\\(\mathbf{e}^{2}-1)\mathbf{e}^{-t}\mathbf{A},\quad&t\geqslant2\end{aligned}\right.\right. io={(1eλ)A,(e21)etA,0t2t2

io(t)和激励is(t)如图

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

                                        激励和响应波形
  • 6
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值