以下是DeepSeek - LLM 7B Chat、DeepSeek - V3、DeepSeek - LLM 6.7B 三个版本模型所需硬件资源的介绍:
DeepSeek - LLM 6.7B 最小最基础版本
1. 内存(RAM)
- 非量化运行时,由于模型参数数量相对较少,大约需要13GB - 14GB的系统内存来加载模型和进行基本推理。如果使用8位量化技术(将模型参数从32位浮点数转换为8位整数),内存需求可降低至约7GB;使用4位量化技术,内存需求可进一步降低到3.5GB - 4GB ,这使得在内存相对有限的环境下也能运行该模型。
2. GPU显存
- 若使用GPU加速推理,在非量化情况下,大约需要7GB - 8GB的GPU显存。采用量化技术后,显存需求可以显著降低,8位量化时约需3.5GB - 4GB,4位量化时约需1.75GB - 2GB 。这意味着在消费级显卡如NVIDIA GeForce RTX 3060(12GB显存)上也能够运行该模型。
3. 存储
- 模型文件本身大约占用7GB的磁盘空间,因此需要至少7GB以上的可用磁盘空间来存储模型文件。
4. CPU
- 一般具有多核的普通CPU(如Intel Core i5/i7或AMD Ryzen 5/7系列)就可以满足需求,核心数建议至少4核及以上,以处理模型推理过程中的一些非GPU计算任务。