👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
摘要:该文提出一种慢时变风下无人机路径跟随的自适应控制方案。该控制策略将基于矢量场法的路径跟随规律与抵消风未知分量影响的自适应项集成在一起。特别是,结果表明,误差后的路径在缓慢时变的未知风下有界,对于未知恒定风,则收敛为零。数值模拟表明,在风况未知且时变缓慢的环境中,所提方法弥补了对风矢量知识的不足,并且比最先进的矢量场方法获得了更小的误差路径。
原文摘要:
Abstract:
In this paper, an adaptive control scheme for Unmanned Aerial Vehicles (UAVs) path following under slowly time-varying wind is developed. The proposed control strategy integrates the path following law based on the vector field method with an adaptive term counteracting the effect of wind's unknown component. In particular, it is shown that the path following error is bounded under slowly time-varying unknown wind and converges to zero for unknown constant wind. Numerical simulations illustrate that, in environments with unknown and slowly time-varying wind conditions, the proposed method compensates for the lack of knowledge of the wind vector, and attains a smaller path following error than state-of-the-art vector field method.
无人机 (UAV) 在许多应用中用途广泛。应用领域的大多数任务,如对某个目标的军事监视和森林火灾中的救援任务,都依赖于无人机中准确而强大的路径生成器和路径跟踪控制器。路径跟踪控制器设计的挑战源于风干扰、无人机动态特性和传感器质量。本文将风对无人机行为的影响作为路径遵循设计过程中的主要考虑因素。
已经提出几种无人机路径跟踪方法,并在实际无人机平台上进行了测试。在 [1] 中,总结了最先进的 2D 路径跟踪算法,例如胡萝卜追逐算法、非线性制导定律 (NLGL) [2]、基于矢量场 (VF) 的路径跟踪、基于 LQR 的路径跟踪 [3] [4] 和基于视线 (PLOS) 的路径跟踪的纯追踪 [5],并使用两个指标相互比较:总控制工作量和总交叉跟踪误差。
VF路径遵循的基本概念是在所需路径周围构建向量场,以向车辆提供路线命令。通常,路径遵循定律是从李雅普诺夫稳定性分析得出的,该分析保证了全局稳定的收敛到所需路径。这个概念的实现如[6],[7]所示。李雅普诺夫向量场的另一种变体在[8]中提出,称为切向量场引导。
然而,VF方法在完全已知的恒定风扰动的假设下工作。本文的主要贡献是将标准矢量场路径遵循策略[6]扩展到不确定的时变风情景,其中未知和可能的时变风分量可能加起来是一个恒定的风分量。在这项工作中,通过抵消未知风分量影响的估计器来增强路径跟随控制律,从而产生自适应矢量场路径跟随策略。通过Lyapunov方法进行了稳定性分析,结果表明,误差跟随路径在缓慢时变的未知风下有界,对于未知恒风则收敛为零。
基于矢量场法时变未知风环境下无人机自适应路径跟踪研究
一、矢量场法在无人机路径跟踪中的应用原理
矢量场法通过构建全局导航向量场(GVF),为无人机提供位置相关的期望飞行方向。其核心原理包括:
-
路径隐式建模
-
向量场分解
-
稳定性与计算优势
- 通过Lyapunov稳定性证明,路径误差在恒定风扰动下渐近收敛;
- 归一化处理使向量场仅提供方向信息,与速度解耦,兼容不同动力学模型。
二、时变未知风环境的影响机制
-
风扰动特性
- 时变风:风速/方向随时间变化,导致无人机需频繁调整姿态与航向;
- 风切变:低空环境中短距离风速突变,引发姿态失稳与能量消耗激增。
-
控制挑战
- 动力学耦合:横向风影响位置,垂直风扰动姿态,需解耦控制;
- 能量限制:逆风飞行增加功耗,降低续航时间;
- 模型不确定性:风场难以实时精确建模,传统控制律易失效。
三、自适应控制方法的关键技术
-
核心策略
结合矢量场法与在线参数调整机制,动态补偿风扰动:- 风估计器:利用Gamma增益自适应项估计未知风分量,更新期望航向角;
- 模糊逻辑:通过模糊规则动态调整PID参数,适应风速突变(如0.3秒内完成策略调整);
- 滑模控制:引入超螺旋滑模(ASTSM),通过自适应增益抑制气动参数摄动。
-
典型算法
- 自适应矢量场(AVF) :在标准GVF中集成风扰动估计项,Lyapunov证明误差有界;
- L1自适应控制:分离高频振荡与风扰动,提升滚转角跟踪精度;
- 神经网络补偿:多层逼近网络估计多源不确定性,增强抗干扰能力。
四、系统集成与鲁棒性验证
-
航段切换优化
- 使用螺旋线拟合相邻直线路径,基于半平面准则平滑过渡,避免航向突变;
- 结合动态积分机制,减少稳态跟踪误差(仿真显示误差降低30%)。
-
验证方法
- 数值仿真:在Matlab/Simulink中模拟时变风场(如W=6 m/s,ϕw=230∘),对比不同方法的路径偏差;
- 硬件在环(HIL) :通过PX4软在环仿真验证算法实时性,误差小于1.5倍翼展;
- 实际飞行测试:在五级风(10.7−13.8 m/s10.7−13.8m/s)条件下验证自适应控制的鲁棒性。
五、现有解决方案与性能对比
方法 | 风扰动类型 | 误差收敛性 | 计算复杂度 | 适用场景 |
---|---|---|---|---|
传统GVF法 | 恒定风 | 渐近收敛 | 低 | 简单直线/圆形路径 |
自适应模糊PID | 时变风(慢变) | 有界 | 中等 | 低空复杂轨迹 |
滑模控制+GVF | 强风切变 | 有限时间收敛 | 高 | 高动态环境 |
神经网络补偿GVF | 随机湍流 | 指数收敛 | 高 | 多障碍物环境 |
六、未来研究方向
- 复杂轨迹生成:突破隐函数曲面限制,开发基于离散航点的GVF构建方法;
- 在线风场估计:融合卡尔曼滤波与机器学习,提升风扰动预测精度;
- 多机协同:扩展分布式矢量场算法,实现编队抗风协同(如角分离控制);
- 能量优化:结合风速预测调整飞行速度,延长任务时间。
七、结论
矢量场法与自适应控制的结合为时变未知风环境下的路径跟踪提供了高效解决方案:
- 优势:计算效率高(实时更新周期<50 ms)、误差有界性(仿真误差<2 m)、兼容多种无人机平台;
- 局限:对快速风切变的响应延迟(约0.5秒)、复杂轨迹建模依赖人工设计。
通过持续优化自适应算法与风场估计技术,该方向有望在物流、巡检等低空经济场景中实现更高精度的自主飞行。
📚2 运行结果
部分代码:
%% Initialization
chi_inf = pi/2; %course angle far away from path (rad)
alpha = 1.65; %positive constant describe the speed of response of course
%hold autopilot loop (rad/s)
k = 0.1; %positive constant influence the rate of the transition from
%x_inf to zero, also control the slope of the
%sliding surface near the origin(m^-1)
kk = pi/2; %gain parameter controls the shape of the trajectories onto
%the sliding surface.(rad^2/s)
epsi = 0.5; %width of the transition region around the sliding surface
%which is used to reduce chattering in the control.(rad)
Gamma = 80; %Estimator gain for straight line
W = 6; %constant wind velocity(m/s)
phiw = 230/180*pi;%constant wind direction(rad)
Va = 13; %Longitudinal velocity(m/s)
A = 3; % Time varying wind's amplitude (variance)
phiA = pi; %Time varying wind's angle (variance)
%% ------------------------------------
% ---------Stright line following------
% -------------------------------------
% Initial conditions
x_int = 0;y_int = 80;course_int = pi/4;%Initial position and posture of UAV
ang = 0; a = 0;b = 0; % Course angle, slop and intercept of desired path
i=-1;% Directon of desired path (i = -1, go right, x increases; i = 1, go left, x decreases)
endx = 300;% stopping condition: the end value of x coordinate
Method =3;% 1: Beard's method, 2: Ideal method, 3: our method
% Initial value of Vg'
Vg0 = InitialVg(A,0,W,phiw,Va,course_int);
% simulation of stright line following
simout=sim('RevisedStraightLine');
% results
figure
[vfx,vfy] = meshgrid(0:20:300,-50:20:150);
wx = W*cos(phiw)*ones(size(vfx));
wy = W*sin(phiw)*ones(size(vfy));
quiver(vfx,vfy,wx,wy,0.5,'c','linewidth',0.5)
hold on
plot(x.data,y.data,'k','linewidth',2)
plot([0 300],[0 0],'--b','linewidth',2)
quiver(x.data(1:50:end),y.data(1:50:end),1*cos(chi_d.data(1:50:end)),1*sin(chi_d.data(1:50:end)),0.4,'r','linewidth',0.5)
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。