👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
随着各种新兴技术的发展,无人机在灾后救援、物资运输、环境监测、军事作战等多个领域起着广泛的应用[1]。航迹规划是无人机执行任务中最重要的部分之一,是指在一定的约束条件下,找到一条能从起点抵达终点且安全、快速、消耗代价小的路线[2]。因此,航迹规划问题经常被当作优化问题来处理,但传统的优化方法无法得到较为精确的解。近年来,受到自然界现象的启发,国内外学者提出了许多生物智能算法如人工蜂群算法、蚁 群 算 法 、天牛须搜索算法 等。它们具有原理简 单、易收敛到最优解、参数设置简单等优点,因此在优化问题中有着广泛的应用。
灰 狼 优 化 算 法是一种群体智能搜索算法,借鉴了灰狼群体中的社会等级制度和捕食行为模式,具有较强的收敛性能和探索能力[4]。但是随着维度和复杂性的增加,GWO 算法 会出
现收敛速度慢、易陷入局部最优、寻优效果较差等问题,于是一些改进的算法被相继提出,一定程度上解决了上述问题。
在无人机航迹规划问题中,建立无人机的规划空间环境和航迹评价指标是进行航迹规划的前提准备。
不同的环境信息能够直接影响航迹规划的结果,也会影响执行任务的效果,因此对规划空间环境进行精准建模是十分重要的。考虑到数据存储和计算量的问题,本文采用栅格法来建立规划空间环境模型。
1. 概述
无人机路径规划是无人机飞行控制的重要组成部分,旨在找到一条从起点到终点的最优路径,同时满足各种约束条件(如最小飞行距离、避开障碍物、满足动态环境约束以及优化能源消耗等)。灰狼优化算法(Grey Wolf Optimizer, GWO)是一种基于生物行为模拟的全局优化算法,通过模拟灰狼的社会等级和狩猎行为,能够在复杂的搜索空间中找到最优或次优路径。本文将探讨GWO算法在无人机路径规划中的应用及其性能优势。
2. 灰狼优化算法基本原理
灰狼优化算法由Ali Mohyeddin在2014年提出,借鉴了灰狼社会中的领导结构和狩猎策略来解决复杂优化问题。在GWO算法中,群体中的个体被称为“狼”,分为阿尔法(α)、贝塔(β)和德尔塔(δ)三类,分别代表最高、次高和第三高位的狼,它们引领整个狼群进行搜索。此外,还有跟随者(ω)围绕这些领导狼更新位置。
灰狼狩猎过程包含以下步骤:
- 包围猎物:利用位置更新公式实现对猎物的包围。
- 追捕猎物:通过α、β和δ狼的位置信息,指导ω狼移动,实现全局优化。
- 攻击猎物:通过调整收敛因子,平衡全局搜索和局部搜索能力。
3. GWO在无人机路径规划中的应用
在无人机路径规划中,GWO算法可以建模为优化问题,其中无人机的飞行约束(如最大转弯角、最大爬升角、最低和最高飞行高度等)以及飞行环境中的障碍物和威胁区(如山体、雷暴区)需考虑在内。
步骤:
- 建模:将无人机路径规划问题转化为优化问题。
- 求解:利用GWO算法的全局搜索和局部搜索能力,在复杂的飞行环境中为无人机规划出无碰撞且高效的飞行路径。
4. GWO算法的变种
在无人机路径规划中,GWO算法的变种如多种群灰狼优化算法(MP-GWO)和灰狼-布谷鸟优化算法(CS-GWO)也展现出强大的应用潜力。
- 多种群灰狼优化算法(MP-GWO):通过并行搜索不同区域来增强算法的全局搜索能力,同时保持局部搜索的精度,特别适用于多无人机协同作战场景。
- 灰狼-布谷鸟优化算法(CS-GWO):结合了GWO和布谷鸟搜索算法(CS)的优势,利用CS的随机游走特性跳出局部最优解,提高求解精度和灵活性。
5. 实验与仿真
在无人机路径规划的仿真实验中,通常会设置不同的飞行环境和约束条件,以验证算法的可行性和有效性。实验结果通常包括规划出的飞行路径、飞行时间、避障效果等关键指标。
通过MATLAB仿真,可以模拟无人机的路径规划和轨迹规划,包括跳跃点搜索、生成凸多胞体(安全飞行走廊)、时间分配(平均时间分配、梯形时间分配)、轨迹规划(QP)和轨迹跟随控制(PD控制器)。
6. 结论
基于GWO算法及其变种的无人机路径规划方法,具有结构简单、参数少、易于实现等优点,能够在复杂的飞行环境中为无人机提供高效、安全的飞行指导。未来,随着算法的不断优化和无人机技术的不断发展,这些方法将在更多领域得到广泛应用。
📚2 运行结果
部分代码:
% Calculating theta base on start and target points
theta = atand((target(2) - start(2))/(target(1) - start(1)));
% Parameter to control size of bounds
delta_d = 0;
% Number of wolfs
N = 50;
% Number of point generation for each wolf
d = 10;
% Constant for Cost_Function
mhio = 0.4;
% Optimization itteration
t_max = 100;
%% Initialization
% Transofrm point and threats to the new coordination
start_transform = Coordinate_Transfromation(start, start, theta);
target_transform = Coordinate_Transfromation(target, start, theta);
threats_tranform = threats;
for i = 1:size(threats, 1)
threats_tranform(i, 1:3) = Coordinate_Transfromation(threats(i, 1:3), start, theta);
end
% Calculating bounds for initialization and producing N random intial points
[P_min, P_max] = UL_Bounds(threats_tranform, delta_d);
wolfs_positions = Initialization(N, d, target_transform, start_transform, P_min, P_max);
% calculating fittness of each wolf
fitness = Inf;
for i=1:N
% wolfs_positions(:, :, i) is a set of d points' coordinates for the ith wolf
fitness_wolf = Cost_Function(wolfs_positions(:, :, i), threats_tranform, mhio, d);
if fitness_wolf < fitness
fitness = fitness_wolf;
X_alpha = wolfs_positions(:, :, i);
X_alpha_index = i;
end
end
% Generating matrix for Xi(t).
X_t = zeros(d, 3, N, t_max);
for i = 1:N
for t = 1:t_max
if t==1
% We have Xi(1) for different all i. So we fill the X_t(:,:,i,1)
% with the known positions.
X_t(:,:,i,1) = wolfs_positions(:, :, i);
else
% Also since all the time for all wolfs, the x coordinate
% should be the same, we fill it so !
X_t(:,1,i,t) = wolfs_positions(:, 1, i);
% Also the last row (d) for all X_t should be the target
X_t(d,:,i,t) = target_transform;
end
end
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]许乐,赵文龙.基于新型灰狼优化算法的无人机航迹规划[J].电子测量技术,2022,45(05):55-61.DOI:10.19651/j.cnki.emt.2108509.
[2]芦方旭,米志超,李艾静,王海,田雨露.基于灰狼算法的无人机基站三维空间优化部署[J].兵器装备工程学报,2021,42(07):185-189.