两种思路估计车辆续驶里程

从网上搜集到的论文来看,现有的续驶里程测量方法中一部分是通过现有数据训练通用的机器学习模型,之后根据电压,电流,SOC,单体最高温度,单体最低温度等多个变量综合对续驶里程进行预测,另一部分是根据工业测量的SOC和续驶里程的转化公式,通过SOC直接算得。

第一种方法:
因为现有的数据集没有续驶里程这一项,所以我们要根据已有的累计里程求的续驶里程
这种方法肯定有误差,我采用的方法是求消耗1%SOC能走的距离,进而估算当前SOC消耗至截止SOC可行驶的距离(即续驶里程)

在这里插入图片描述
data['累计里程'] = abs(data['累计里程'] - data['累计里程'].tolist()[-1])
红色为SOC和直接不定截止SOC测得的续驶里程的相关性,但不好做回归预测

        if(data['SOC'][i] != data['SOC'].tolist()[-1]): 
            newdata['累计里程'][i] = abs(data['累计里程'].tolist()[i] - data['累计里程'].tolist()[-1]) / (data['SOC'].tolist()[i] - data['SOC'].tolist()[-1]) * (data['SOC'].tolist()[i] - min)
        else:
            newdata['累计里程'][i] = newdata['累计里程'][0]/(newdata['SOC'].tolist()[0] - newdata['SOC'].tolist()[-1]) * (newdata['SOC'].tolist()[0] - min)

蓝色为SOC和转换后得出的续驶里程的相关性

基于此,我们可以进行预测分析

第二种方法:
直接估计行驶里程,通过行驶里程来测续驶里程
行驶里程与SOC的相关性

使用前一天SOC预测第二天的行驶里程的准确率

参考资源链接:[多模态组合导航系统:里程计+地磁+GPS的高精度设计与仿真验证](https://wenku.csdn.net/doc/3cp67bw7gd?utm_source=wenku_answer2doc_content) 要设计一个高效的多传感器组合导航系统,需要深入了解各个传感器的工作原理及其在实际应用中可能遇到的误差和限制。基于卡尔曼滤波的多传感器数据融合方法是一种有效的技术手段,其设计思路和技术关键点包括: 1. 数据采集:首先,需要分别从里程计、地磁传感器和GPS获取数据。里程计提供距离和方向的变化,地磁传感器提供与地球磁场相关的位置信息,而GPS提供卫星定位信息。 2. 模型建立:建立各个传感器的数学模型以及它们之间误差的统计模型。例如,里程计的误差模型通常基于车辆的动力学模型,而GPS和地磁传感器的误差模型则需考虑到信号延迟、多路径效应等因素。 3. 卡尔曼滤波器设计:根据传感器模型,设计一个卡尔曼滤波器,其工作原理是将各个传感器提供的信息视为观测量,通过预测和更新两个步骤来估计系统的状态。在预测步骤中,基于上一时刻的状态估计和动态模型,预测当前时刻的状态;在更新步骤中,结合新的观测量,对状态估计进行修正和优化。 4. 状态估计和误差校正:通过卡尔曼滤波器,对位置、速度等状态变量进行估计,同时对传感器数据进行误差校正。卡尔曼滤波器能够动态调整权重,根据传感器的可靠性和精度自动平衡各个传感器的贡献度。 5. 系统集成与实现:将卡尔曼滤波算法实现在FPGA导航计算机上,确保实时处理和高效率的数据融合。此外,可以通过MATLAB进行仿真测试,验证算法和系统设计的正确性和性能。 6. 实验验证:通过仿真实验,可以模拟不同的环境条件,验证组合导航系统的定位精度和鲁棒性。实验结果应展示在各种情况下系统的导航性能,包括单一传感器失效时的误差和定位精度。 参考《多模态组合导航系统:里程计+地磁+GPS的高精度设计与仿真验证》一书,可以获取更多关于组合导航系统设计、卡尔曼滤波器应用以及仿真实验的详细信息。这本书不仅提供了理论知识,还包含了丰富的实践案例和实验分析,是进行多传感器组合导航系统研究的重要资料。 为了更深入地掌握多传感器组合导航系统的实现和优化,建议在阅读完上述资料后,进一步探索传感器误差建模、卡尔曼滤波器的高级技术如无迹卡尔曼滤波( Unscented Kalman Filter, UKF )、粒子滤波等,以及FPGA编程和硬件加速技术等。这将有助于在理论和实践中进一步提升导航系统的性能。 参考资源链接:[多模态组合导航系统:里程计+地磁+GPS的高精度设计与仿真验证](https://wenku.csdn.net/doc/3cp67bw7gd?utm_source=wenku_answer2doc_content)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值