基于通义千问与 MCP-Agent 的网页智能总结体实战探索

一、网页总结智能体的必要性

  • 现实困境:行业报告常常篇幅长达数万字,产品文档也极为冗长,人工进行内容提炼不仅耗费大量时间,还需要投入大量精力
  • 技术优势:大语言模型(LLM)强大的文本理解能力,与智能体(Agent)自动化的处理流程相结合,形成了理想的解决方式
  • 发展趋势:根据Gartner的预测,到2026年,80%的企业会部署AI代理,用于处理日常的文档工作

二、技术基础:MCP-Agent通义千问的融合

1. MCP-Agent框架
多智能体协同机制

通过多个Agent的协作配合,能够将复杂任务进行有效拆解,无论是网页数据抓取、语义内容分析,还是总结提炼生成,都能高效完成。

显著优势
  • 采用模块化架构设计,便于功能的灵活拓展与升级
  • 具备多模型调度能力,可实现智能决策路由
  • 配备内置记忆库,助力系统实现持续学习与优化
2. 通义千问大模型
阿里云顶尖的千亿参数级中文大语言模型
核心功能
  • 具备卓越的长文本深度解析能力,可处理高达10万字级别的上下文内容
  • 支持多形式摘要生成,包括要点提炼、故事化叙述、问答式呈现等多种模式
  • 针对金融、医疗、科技等垂直领域进行专项优化,具备强大的领域自适应能力

三、实战案例:从0到1构建网页智能摘要流水线

1. 我们使用uv管理项目代码

我们使用uv去管理这个项目相关的依赖和代码, 让我们先创建项目:

mkdir web_page_summary
cd web_page_summary
uv init

# 安装依赖
uv add mcp_agent
2. 网页总结智能代理实现代码写入一个main.py文件中
# Usage: uv run main.py
# -*- coding: utf-8 -*-

import asyncio
import argparse

from mcp_agent.app import MCPApp
from mcp_agent.agents.agent import Agent
from mcp_agent.workflows.llm.augmented_llm_openai import OpenAIAugmentedLLM

app = MCPApp(name="web_page_summary")

async def main(url):
    async with app.run() as mcp_agent_app:
        logger = mcp_agent_app.logger
        # 创建一个 finder_agent 可以用于网络内容的 agent
        finder_agent = Agent(
            name="finder",
            instruction="""You can fetch URLs.
                Return the requested information when asked.""",
            server_names=["fetch"],  # 声明 agent 可以使用的 mcp server
        )

        async with finder_agent:
            # 确保 MCP Server 初始化完成, 可以被 LLM 使用
            tools = await finder_agent.list_tools()
            logger.info("Tools available:", data=tools)

            # Attach an OpenAI LLM to the agent
            llm = await finder_agent.attach_llm(OpenAIAugmentedLLM)

            # 使用 MCP Server -> fetch 获取指定 URL 网页内容
            result = await llm.generate_str(
                message=f"get content from {url}"
            )
            logger.info(f"content intro: {result}")

            # 获取网页内容结果总结
            result = await llm.generate_str("Please summary this webpage with lang_code")
            logger.info(f"Summary: {result}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='Process some integers.')
    parser.add_argument('--url', type=str, required=True, help='The URL to fetch')
    args = parser.parse_args()
    asyncio.run(main(args.url))
3. 将MCP Server配置写入mcp_agent.config.yaml文件中
$schema: "https://github.com/lastmile-ai/mcp-agent/blob/main/schema/mcp-agent.config.schema.json"

execution_engine: asyncio
logger:
type: file
  level: info
  transports: ["console", "file"]
  path: "mcp-agent.log"
  progress_display: true


mcp:
  servers:
    # fetch 用于获取网页内容
    fetch:
      command: "uvx"
      args: ["mcp-server-fetch"]

openai:
# 将 API 调整为阿里云百炼大模型平台的 OpenAI 兼容 API
  base_url: "https://dashscope.aliyuncs.com/compatible-mode/v1"
# 模型选用 qwen-turbo
  default_model: "qwen-turbo"
4. 配置一下大模型的API密钥
# mcp_agent.secrets.yaml
openai:
  api_key: "sk-xxxxxx" # 记得这里替换为百炼通义千问大模型的APIKEY
5. 执行下这个网页总结智能代理
uv run main.py --url "https://docs.cline.bot/improving-your-prompting-skills/prompting#advanced-prompting-techniques"

img

img

6. 小结

成功实现了网页内容总结,以后可以开发一个工具或者页面专门将自己收藏夹中的网页内容汇总成知识摘要存储到个人知识库,变为自己的真正知识库。

额外tips: 如果抓取网页有问题,mcp agent会提示你将文章内容粘帖到控制台,它帮你总结摘要,比如我将知乎一片关于王阳明先生100句名言给了它,总结摘要是:

img

最后项目目录如下:

img

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### MCP 技术概述 MCP 是由 Anthropic 开发的一种用于构建 AI Agent 的技术框架,旨在简化开发者创建和部署人工智能驱动工具的过程[^2]。通过该框架,可以轻松集成多种大模型(LLMs),包括但不限于 DeepSeek 和其他开源模型。 通义作为阿里巴巴集团旗下的超大规模语言模型,在功能性和灵活性上具有显著优势。要将通义 MCP 进行集成,可以通过以下方式实现: --- ### 集成方案分析 #### 1. 使用 Docker Compose 构建环境 为了快速启动并运行 MCP-Bridge 容器,可采用 `docker-compose` 命令来完成基础环境搭建。具体命令如下所示: ```bash docker compose up --build ``` 此操作会自动拉取所需镜像并初始化容器化服务,从而为后续的开发工作提供稳定的运行平台[^1]。 #### 2. 调整服务器端逻辑以适配通义 API 基于 MCP 提供的功能接口定义机制,可通过扩展其内置装饰器函数来自定义业务逻辑。例如,下面展示了一个简单的例子——调用通义的服务来进行两数比较处理: ```python from mcp.server.fastmcp import FastMCP import requests mcp = FastMCP("comparisonService") @mcp.tool() def compare_with_qwen(num1, num2): payload = { 'prompt': f'比较 {num1} 和 {num2}, 返回哪个更大或者相等', 'max_tokens': 50, 'temperature': 0.7 } response = requests.post( url="https://your-qwen-api-endpoint.com/v1/completions", headers={"Authorization": "Bearer YOUR_API_KEY"}, json=payload ) result = response.json().get('choices', [{}])[0].get('text', '').strip() return result or "无法获取结果" if __name__ == "__main__": mcp.run(transport='stdio') ``` 上述代码片段展示了如何借助 HTTP 请求向通义发送查询请求,并解析返回的结果数据[^3]。 #### 3. 结合资源管理模块增强交互体验 除了核心计算能力外,还可以进一步利用 MCP 中的资源声明特性,增加更多维度上的用户体验优化措施。比如引入候语生成组件: ```python @mcp.resource("welcomeMessage://{username}") def generate_welcome_message(username): prompt_template = f"欢迎来到我们的应用,请称呼用户为{username}" api_response = call_qwen_api(prompt_template) return api_response ``` 这里假设存在一个辅助方法 `call_qwen_api()` 来封装实际通信细节。 --- ### 结 综上所述,MCP 不仅能够帮助技术人员迅速建立起强大的 AI 应用程序原型,而且还能灵活对接不同类型的预训练模型,如通义这样的高性能解决方案。这使得整个生态体系更加开放多元,同时也促进了行业标准化进程的发展趋势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值