【代码】使用预训练的语义分割网络

本文介绍了如何使用PyTorch库中的fcn_resnet101模型对图像进行预处理、分类和可视化。作者展示了从IPYNB文件中读取图片,进行图像处理,最终输出类别预测的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P274书上的代码,这里是从ipynb文件中按顺序复制来的:
使用到的图片如下:
在这里插入图片描述

代码:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import PIL
import torch
from torchvision import transforms
import torchvision
model = torchvision.models.segmentation.fcn_resnet101(pretrained=True)
model.eval()
## 读取照片
image = PIL.Image.open("Zdata/img1.jpg")
# 显示图像
plt.imshow(image)
plt.show()
## 图像预处理,转为0-1之间,标准化处理
image_transf = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean = [0.485, 0.456,0.406],
                        std = [0.229, 0.224, 0.225])
])
image_tensor = image_transf(image).unsqueeze(0)

# 将图像丢入模型进行处理
output 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超好的小白

没体验过打赏,能让我体验一次吗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值