基本的LC串联和并联振荡电路分析

LC串联振荡电路
在这里插入图片描述

原理分析:第一阶段:初始状态:合上开关,iL=0,uC=0V,uL=12V,diL/dt=+max,之后:电感电流逐渐增大,电容电压逐渐增大,电感电压逐渐减小,电感电流变化率逐渐减小,电源向电感充磁,向电容充电;第二阶段:初始状态:iL=+max,diL/dt=0,uL=0V,uC=12V,之后:由于电感电流不能突变,因此电感电流逐渐减小,电感电流的变化率逐渐增大,电感电压反向且逐渐增大,电容电压继续增加,uC=12+uL,电感向电容充电,电感消磁;第三阶段:初始状态:iL=0,uL=-12V,diL/dt=max,uC=24V,之后:由于电容电压不能突变,因此电容电压逐渐减小,电感电流逐渐增大,电感电压逐渐减小,电感电流变化率逐渐减小,电容向电感充磁,电容放电;第四阶段:初始状态:iL=-max,uL=0V,diL/dt=0,uC=12V,之后:由于电感电流不能突变,因此电感电流逐渐减小,电感电压逐渐增大,电感电流变化率逐渐增大,电容电压逐渐减小,电感消磁,电容放电。

数学分析:
1、假设电感初始电流为 I L 0 {I}_{L0} IL0,电容初始电压为 U C 0 {U}_{C0} UC0
电路的微分方程为: L d i L d t + u C = u s L\frac{d{i}_{L}}{dt}+{u}_{C}={u}_{s} LdtdiL+uC=us C d u C d t = i L C\frac{d{u}_{C}}{dt}={i}_{L} CdtduC=iL us为直流电压源电压。
解方程得: i L ( t ) = I L 0 c o s ω t + u s − U C 0 Z s i n ω t {i}_{L}(t)={I}_{L0} cos \omega t+ \frac{{u}_{s} -{U}_{C0} }{Z} sin \omega t iLt=IL0cosωt+ZusUC0sinωt u C ( t ) = u s − ( u s − U C 0 ) c o s ω t + Z I L 0 s i n ω t {u}_{C}(t)={u}_{s} - ({u}_{s}-{U}_{C0}) cos \omega t+ Z {I}_{L0} sin \omega t uCt=ususUC0cosωt+ZIL0sinωt
式中: ω \omega ω是谐振角频率, ω = 1 / L C \omega = 1 / \sqrt{LC} ω=1/LC ,谐振频率 f = 1 2 π L C f=\frac{1}{2 \pi \sqrt{LC}} f=2πLC 1,Z是谐振电感和谐振电容得特性阻抗 Z = L C Z=\sqrt{\frac{L}{C}} Z=CL
2、假设电感初始电流为0,电容初始电压为0。
解方程得: i L ( t ) = u s Z s i n ω t {i}_{L}(t)= \frac{{u}_{s}}{Z} sin \omega t iLt=Zussinωt u C ( t ) = u s − u s c o s ω t {u}_{C}(t)={u}_{s} - {u}_{s}cos \omega t uCt=ususcosωt

LC串联振荡电路波形:
在这里插入图片描述
余弦波(channel_B)为电感电压,半波(channel_A)为电容电压。

LC串联振荡电路+电阻
在这里插入图片描述
LC串联振荡电路+电阻波形:
在这里插入图片描述
电路工作在欠阻尼 R < 2 L / C R<2\sqrt{L/C} R<2L/C 状态。

LC并联振荡电路

在MATLAB中,可以使用RLC电路模型进行串联并联的二阶电路的仿真分析。 首先,我们需要在MATLAB中定义RLC电路的参数。例如,对于一个串联的二阶电路,可以定义电阻R、电感L电容C的值。对于并联的二阶电路,可以定义电导G、电纳B电容C的值。可以使用MATLAB中的变量来表示这些参数。 然后,我们需要使用MATLAB中的电路方程对电路进行建模。对于串联电路,可以使用微分方程描述电路的响应。例如,对于一个简单的串联RLC电路,电感的微分方程为Ldi/dt + Ri + q/C = 0,其中i是电流,q是电容的电荷。对于并联电路,可以使用代数方程描述电路的响应。例如,对于一个简单的并联RLC电路,电感的代数方程为V = Li + Ri + q/C,其中V是电压。 接下来,可以使用MATLAB中的ODE求解器对电路的方程进行求解。对于串联电路,可以使用ode45函数求解微分方程。对于并联电路,可以使用fsolve函数求解代数方程。 在求解方程之后,可以分析电路的响应。可以画出电流电压随时间变化的图形,以观察电路的振荡行为。还可以计算电路的频率响应频率特性,以评估电路在不同频率下的表现。 最后,可以根据仿真分析结果对电路的性能进行评估改进。可以调整电路的参数,例如改变电阻、电感或电容的值,以优化电路的性能。还可以进行参数扫描,以研究电路的参数对响应的影响。 总之,MATLAB提供了强大的工具函数,可以进行RLC串联并联的二阶电路的仿真分析,帮助我们更好地理解优化电路的性能。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值