目标检测算法发展历程

这篇博客记录了作者从B站同济子豪兄的【精读AI论文】系列中学习R-CNN算法的过程。内容包括对R-CNN的理解、目标检测的重要性以及适合初学者的论文阅读指南。作者立下目标,希望在硕士一结束前掌握这一领域的知识。
摘要由CSDN通过智能技术生成

这里的图片是从b站同济子豪兄的【精读AI论文】 R-CNN深度学习目标检测算法 处截图的, 在这算是个记录吧,同时立个小小的flag,尽量在硕一结束前都搞明白是干啥的吧(希望能坚持住 :)

在这也小推一下子豪兄,论文精读系列真的太适合我这种纯小白了,大家如果需要(或者被需要)读论文又自己读不明白可以去试试。
在这里插入图片描述

目标检测是深度学习中的一个重要研究领域,目的是在图像或视频中检测出特定的目标物体并标注出其位置。下面是深度学习目标检测算法发展历程: 1. R-CNN(2014年):R-CNN是第一个成功的目标检测算法,它将区域提取和分类两个问题分开处理。具体来说,它首先通过选择性搜索算法提取出一些候选区域,然后将这些区域输入卷积神经网络(CNN)中进行特征提取和分类,最后使用回归器对每个候选区域进行位置精修。 2. Fast R-CNN(2015年):Fast R-CNN是对R-CNN的改进,它使用RoI池化层代替了R-CNN中的卷积层,从而使得特征提取和分类可以一次性完成。此外,Fast R-CNN还引入了多任务损失函数,同时优化了分类和位置回归任务。 3. Faster R-CNN(2015年):Faster R-CNN是一种端到端的目标检测框架,它在Fast R-CNN的基础上引入了RPN(Region Proposal Network)模块,用于生成候选区域。通过共享特征提取网络和RPN网络,Faster R-CNN实现了高效的目标检测。 4. SSD(2016年):SSD(Single Shot MultiBox Detector)是一种新型的目标检测算法,它可以实现端到端的检测,无需候选区域生成。SSD采用多尺度特征图来检测不同大小的物体,并使用卷积层来同时进行分类和位置回归。 5. YOLO(2016年):YOLO(You Only Look Once)是一种非常快速的目标检测算法,它可以实现实时检测。与其他算法不同,YOLO将目标检测视为回归问题,并使用卷积神经网络直接输出物体的类别和位置信息。 6. RetinaNet(2018年):RetinaNet是一种新型的目标检测算法,它通过使用Focal Loss函数解决了类别不平衡问题。RetinaNet采用了金字塔特征网络(FPN)来获得多尺度特征,并使用分类和回归头对每个特征层进行预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hydrion-Qlz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值