矩形微带天线简介[搬运]

本文介绍了矩形微带天线的基本概念,包括其在电路板上的广泛应用、低成本和小型化特点。文章详细阐述了微带天线的工作频率与其长度的关系,输入阻抗与宽度的控制,以及辐射方向图的计算。还讨论了微带天线的边缘场效应,解释了天线谐振频率的偏移和辐射的原因。微带天线的辐射主要源于边缘场的电压分布,而非电流,使得它们成为‘电压辐射器’。最后,提到了不同馈电方法对天线性能的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文翻译自https://www.antenna-theory.com。英文够用的朋友可以直接移步。感谢网站创始人Peter Joseph Bevelacqua教授无私的分享。

矩形微带天线

如今微带天线的应用范围越来越广,因为它们可以直接印在电路板上,其在手机市场中变得非常普遍。微带天线成本低,外形小巧且易于制造。本文介绍一下矩形微带天线的基本知识。

考虑由微带传输线馈电的微带天线。微带传输线和接地层均由高电导率金属(通常为铜)制成。该贴片的长度为L,宽度为W,并位于介电常数为εr,厚度为h的基板(某些介电电路板)的顶部。接地层或微带的厚度不是至关重要的。通常,高度h远小于工作波长,但不应远小于波长的0.025(波长的1/40),否则天线效率会降低。图一
侧视图
上图所示微带天线的工作频率由长度L决定。中心频率大约为:在这里插入图片描述
上式表示微带天线的长度应等于电介质(基板)介质内波长的一半。

微带天线的宽度W控制输入阻抗较大的宽度也可以增加带宽。 对于以上述方式馈电的方形贴片天线,输入阻抗约为300欧姆。通过增加宽度,可以减小阻抗。但是,将输入阻抗减小到50欧姆通常需要非常宽的贴片天线,这会占用大量宝贵的空间。宽度进一步控制辐射图。归一化辐射方向图大致由下式给出:
在这里插入图片描述上式中,k是自由空间中的波数。k=2pi/λ。方向图的幅值由下式决定:在这里插入图片描述
对于W = L = 0.5λ的微带天线,其方向图在下图中绘制:在这里插入图片描述贴片天线的方向性约为5-7 dB。如图a所示,当观察微带天线时,磁场呈线极化,并且沿水平方向极化。接下来,我们将考虑涉及微带天线的更多方面。

微带天线的边缘场

考虑像图1那样在末端馈电的方形贴片天线。假设介质是空气(或泡沫塑料,介电常数等于1),且L = W = 1.5米,以使贴片在100 MHz处共振。高度h取为3cm。请注意,微带通常用于更高的频率,因此在实践中它们要小得多。当与200欧姆负载匹配时,S11的大小如图所示。在这里插入图片描述从图中可以看到一些值得注意的观察结果。首先,微带天线的带宽非常小。众所周知,矩形微带天线是窄带的。矩形微带天线的相对带宽通常为3%。其次,微带天线被设计为以100 MHz的频率工作,但是它会在大约96 MHz的频率下谐振。这种偏移是由于天线周围的边缘场造成的,从而使贴片显得更长(末端效应)。因此,在设计微带天线时,通常将其削减2-4%,以实现所需频率的谐振。

天线周围的边缘场可以帮助解释微带天线辐射的原因。考虑下图所示的贴片天线的侧视图。请注意,由于贴片末端的电流为零(开路端),因此在贴片的中心(理论上)电流最大而在始端电流为零。馈电端的电流值很低,部分解释了为什么末端馈电时输入阻抗很高(我们下一章会再解决这个问题)。
在这里插入图片描述
由于贴片天线可以看作是一条开路的传输线,因此电压反射系数为1。发生这种情况时,电压和电流反相。因此,在贴片的末端,电压为最大值(例如+ V伏)。在贴片天线的起点(半波长处),电压一定最小(-V伏)。因此,微带线下方的场将类似于上图,上图大致显示了边缘场的分布。

边缘场是辐射的原因。 请注意,贴片天线表面附近的边缘场都在+ y方向。因此,微带天线边缘上的边缘电场同相相加并产生微带天线的辐射。本段对于理解微带天线至关重要。电流也会在微带天线上相加,但是水平面上的电流大小相等但方向相反,因此互相抵消了。这也解释了为什么微带天线会辐射而微带传输线不会辐射。微带天线的辐射来自边缘场,这是由于有利的电压分布所致。因此,辐射是由于电压而不是电流产生的。因此,与线天线相反,微带天线是“电压辐射器”,而线天线的辐射是因为电流同相相加,因此是“电流辐射器”。

顺便一提,介电常数越小,边缘场就变得越“弯曲”;反之,它们会从微带线处延伸得更远。因此,使用介电常数较小的介质会产生较好的辐射。 相反,当制作微带传输线(不辐射功率)时,需要较高的ε值,以便更紧密地在空间上限制电场,从而减少辐射。这是贴片天线设计的矛盾(trade-off)之一。已有论文研究过,可以在微带天线和传输线部分使用不同的电介质(不同的介电常数)来解决这个问题。

接下来,我们来看一下几种不同的馈电方法。(见下篇)

<think>好的,用户想要查找关于YOLOv12训练的资料,包括教程、配置方法和常见问题解决。首先,我需要确认YOLOv12是否真实存在,因为目前主流版本是YOLOv5、YOLOv7和YOLOv8,可能用户可能误写了版本号。如果YOLOv12不存在,可能需要提示用户检查版本名称是否正确。 假设用户确实是指YOLOv12,但可能是个较新或非官方的版本,那么我需要提供般性的YOLO训练指导,并建议用户参考官方文档或社区资源。根据提供的引用内容,引用[2]提到了模型训练的参数规模和训练步骤,这可能与训练配置相关。引用[3]提到了代码实现和框架结构,可以引导用户查看具体实现。 接下来,我需要整理YOLO训练般步骤,包括环境配置、数据集准备、配置文件调整、训练参数设置以及常见问题。例如,环境配置需要PyTorch、CUDA等;数据集需要符合YOLO格式;配置文件可能涉及模型结构和超参数。常见问题可能包括CUDA内存不足、损失不收敛等,解决方案涉及调整批量大小、学习率等。 同时,需要生成相关问题,帮助用户进步探索,比如性能优化方法、多GPU训练、模型评估指标等。这些相关问题应基于YOLO训练的常见挑战和用户可能的需求。 最后,确保回答符合格式要求,使用正确的中文,数学公式用$...$,独立公式用$$...$$,但在这个问题中可能涉及较少数学内容。引用标记需要自然添加,例如引用[2]关于训练步骤和参数,引用[3]关于代码实现。</think>### YOLOv12训练指南与配置问题解析 目前主流YOLO系列模型(如YOLOv5/YOLOv7/YOLOv8)的训练流程具有相似性。若您提到的YOLOv12是某特定版本,建议先确认其官方文档。以下提供通用训练指南: #### 、环境配置 1. **基础依赖**: - Python 3.8+ - PyTorch 1.8+(需与CUDA版本匹配) - CUDA 11.1+(NVIDIA GPU训练必备) ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 2. **专用工具包**: - YOLO官方仓库(如Ultralytics版本) ```bash git clone https://github.com/ultralytics/yolov5 && cd yolov5 pip install -r requirements.txt ``` #### 二、数据集准备 1. **标准格式**: ```text datasets/ train/ images/ labels/ val/ images/ labels/ ``` 标注文件为.txt格式,每行表示个目标:`class_id x_center y_center width height`(归化坐标)[^3] 2. **配置文件**: - 创建`data/custom.yaml`: ```yaml train: ../datasets/train/images val: ../datasets/val/images nc: 80 # 类别数 names: ['person', 'car', ...] # 类别名称 ``` #### 三、训练配置 1. **模型选择**: ```bash python train.py --img 640 --batch 16 --epochs 300 --data custom.yaml --weights yolov5s.pt ``` - `--img`:输入图像尺寸 - `--batch`:批次大小(受GPU显存限制) - `--weights`:预训练权重路径[^2] 2. **超参数调整**: ```yaml # hyperparameters.yaml lr0: 0.01 # 初始学习率 lrf: 0.2 # 最终学习率 = lr0 * lrf momentum: 0.937 weight_decay: 0.0005 ``` #### 四、常见问题解决 1. **CUDA内存不足**: - 降低`--batch-size` - 使用更小模型(如yolov5s) - 添加`--workers 0`排除数据加载问题 2. **损失不收敛**: - 检查学习率设置:`python train.py --hyp hyp.scratch-low.yaml` - 验证数据集标注准确性 - 尝试冻结骨干网络训练:`--freeze 10` 3. **多GPU训练**: ```bash python -m torch.distributed.launch --nproc_per_node 2 train.py --device 0,1 ``` #### 五、训练监控 1. **TensorBoard集成**: ```bash tensorboard --logdir runs/train ``` 监控指标包括: - 损失函数曲线 - mAP@0.5指标 - 学习率变化曲线
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值