机器人学导论

本文深入探讨了机器人操作臂的运动学原理,包括向量、外积运算、空间描述与变换(如旋转矩阵、齐次变换矩阵)。详细阐述了DH参数、连杆坐标系的变换矩阵以及关节空间、笛卡尔空间的概念。此外,还介绍了操作臂逆运动学的解法,如代数和几何解法,并讨论了雅可比矩阵及其在速度和静力分析中的应用。最后,涉及了作用在操作臂上的静力计算问题。
摘要由CSDN通过智能技术生成

一、预备知识

向量

  • 外积的计算

二、空间描述和变换

描述:位置、姿态、坐标系

  • 旋转矩阵
  • 齐次变换矩阵
  • 右乘联体左乘基

坐标系的关系

  • 欧拉角、固定角

姿态的其他描述方法

  • 等效轴角
  • 欧拉参数与四元数
  • grassmann积

三、操作臂运动学

连杆参数

  • DH参数

  • 连杆联体坐标系的变换矩阵

驱动器空间、关节空间和笛卡尔空间

  • 末端位姿表示

四、操作臂逆运动学

可解性

代数解法和几何解法

  • 解法

  • 超越方程代换

三轴相交的PIEPER解法

  • PIRPER解法
  • PUMA560的另一种代数解法

五、速度与静力

时变位姿的符号表示

  • 位置矢量的微分
  • 速度矢量
  • 角速度矢量

刚体的线速度和角速度

  • B A R ˙ ^A_B\dot R BAR˙的推导

  • 角速度矩阵与角速度矢量

  • C A S C A R = B A S B A R + B A R C B S C B R ^A_CS^A_CR=^A_BS^A_BR+^A_BR^B_CS^B_CR CASCAR=BASBAR+BARCBSCBR

  • 角速度矩阵的转换

连杆间的速度传递

  • 旋转关节
  • 移动关节
  • 向外迭代法

雅可比

  • 笛卡尔速度矢量

  • 两种矩阵

  • 雅可比及其变换

奇异性

  • 求奇异点
  • 速度公式

作用在操作臂上的静力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值