一、预备知识
向量
- 外积的计算
二、空间描述和变换
描述:位置、姿态、坐标系
- 旋转矩阵
- 齐次变换矩阵
- 右乘联体左乘基
坐标系的关系
- 欧拉角、固定角
姿态的其他描述方法
- 等效轴角
- 欧拉参数与四元数
- grassmann积
群
三、操作臂运动学
连杆参数
-
DH参数
-
连杆联体坐标系的变换矩阵
驱动器空间、关节空间和笛卡尔空间
- 末端位姿表示
四、操作臂逆运动学
可解性
代数解法和几何解法
-
解法
-
超越方程代换
三轴相交的PIEPER解法
- PIRPER解法
- PUMA560的另一种代数解法
五、速度与静力
时变位姿的符号表示
- 位置矢量的微分
- 速度矢量
- 角速度矢量
刚体的线速度和角速度
-
B A R ˙ ^A_B\dot R BAR˙的推导
-
角速度矩阵与角速度矢量
-
C A S C A R = B A S B A R + B A R C B S C B R ^A_CS^A_CR=^A_BS^A_BR+^A_BR^B_CS^B_CR CASCAR=BASBAR+BARCBSCBR
-
角速度矩阵的转换
连杆间的速度传递
- 旋转关节
- 移动关节
- 向外迭代法
雅可比
-
笛卡尔速度矢量
-
两种矩阵
-
雅可比及其变换
奇异性
- 求奇异点
- 速度公式