机器人学导论笔记(一)

机器人学简述

 早期机器人:人类不愿做的,交给机器吧
 现如今:医疗,教育,无人驾驶
 涉及领域:机械操作,移动,计算机视觉,人工智能
 最初核心:机械臂
 针对运动分为两类:操作与移动

机械臂

顺逆运动学

 手和胳膊在动,大脑控制肌肉,从驱动角度解释,知道胳膊肌肉的状态,去推断手指的位置

逆运动学

 知道手指的位置,去计算胳膊,肌肉的状态

轨迹规划

 计划机械臂操作对象的运动

刚体运动描述

平面:水平+垂直+旋转->三个自由度
空间:移动(x,y,z 三个自由度) 旋转(对x,y,z旋转)->六个自由度
如何将移动与转动合并在一起描述(瞬间或几何上):
1.在刚体上建立坐标系
2.通过判断刚体坐标原点位置,判断刚体的运动
3.判断刚体坐标轴在世界坐标系下的姿态,判断刚体的姿态
在这里插入图片描述

描述运动:不同时间点,刚体质心会在不同位置,将位置记录下来->轨迹,通过对时间的微分,得到速度,再微分,得到加速度状态,旋转同理,得到角速度,角加速度

移动

量化:将刚体坐标系原点与世界坐标原点,以向量方式连接,再在世界坐标系中投影,得到刚体瞬间的状态
在这里插入图片描述

转动

用刚体坐标系系的三个主轴,代表在世界坐标系下的姿态
1.三个主轴的构成的向量排在一起
2.每个向量三个元素->3x3
以上 形成的矩阵为旋转矩阵:B相对于A的状态
进一步描述:
3.每个B的主轴向量在A上的投影,看各自分量
在这里插入图片描述

例:

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

选择(旋转)矩阵

投影本身是个内积,前后互换,没得影响。
以行的角度观察->Xa分别投影在 Xb,Yb,Zb,上面
其实就是以B为基准,观察A
在这里插入图片描述

例:

在这里插入图片描述

特性:

1.描述两个坐标系之间的相对关系

在这里插入图片描述
两矩阵相乘->3x3单位矩阵
正交矩阵

2.某个坐标上的某个点的表达,转换为另一个坐标上

在这里插入图片描述
在这里插入图片描述
将向量P在B坐标系下拆解(尖帽为单位向量)
在这里插入图片描述
在这里插入图片描述
针对pxa,是将p向量投影到xa上,那么也可将p向量理解为原本在b上的表示->将pb向量投影到xa上,带入,向量两两相乘。
在这里插入图片描述
中间为旋转矩阵*p向量在B上的表达
结论:一个向量,从某个坐标系下的表达 x 这两坐标的相对关系

例:

在这里插入图片描述

3.描述物体转动状态

在这里插入图片描述
在这里插入图片描述

例:

在这里插入图片描述
图示为代数解法
几何上:原来p向量与y轴成60°夹角
多转30°,转到z轴上,长度为2->(0,0,2)

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页