【论文笔记】LIDAR-Based road signs detection For Vehicle Localization in an HD Map

【论文笔记】LIDAR-Based road signs detection For Vehicle Localization in an HD Map

    ~~~          ~~~~     自动驾驶汽车定位是自动驾驶的基本任务之一。大多数当前的全球定位技术都基于使用 GNSS(全球导航卫星系统)。然而,这些解决方案在开阔的天空环境中无法提供优于 2-3 m 的定位精度 [1]。或者,地图的使用已被广泛研究用于定位,因为可以非常准确地预先构建地图。最先进的方法通常使用密集地图或特征地图进行定位。在本文中,我们提出了一种用于第三方地图中车辆定位的道路标志感知系统。这是具有挑战性的,因为第三方地图通常提供稀疏几何特征,与密集地图相比,这使得定位任务更加困难。所提出的方法扩展了 [2] 中的工作,其中开发了基于车道标记的定位系统。使用 GNSS/INS 和 RTK 校正作为地面实况 (GT) 在类似高速公路的测试轨道上进行了实验。误差评估作为与地图相关的曲线坐标 [3] 中定义的跨轨道和沿轨道误差给出。
  本文是 [2] 的扩展,其中提出了基于 LIDAR 的车道线检测车辆定位。除了车道标记外,所提出的方法还使用多层激光雷达检测道路标志,并评估它们对定位精度的影响。如 [2] 所示,车道标记是稳定和鲁棒的特征,可以在横向(横向)上获得良好的定位精度,但纵向误差(沿轨迹)不受影响。在这种方法中,我们研究了道路标志检测对沿轨道误差的影响。实验是在类似高速公路的测试轨道上以不同的自我车辆速度进行的。我们实验中使用的激光测距仪是 Velodyne VLP-32C。此外,具有 RTK 校正信号的高精度 GPS(ixblue:ATLANS-C)被用作评估目的的地面实况。第三方地图 1 以厘米精度(≈ 5 cm)构建,包含高级几何特征,如车道标记、道路标志、道路交叉口等。

检测道路标志

在文献中,基于视觉的道路标志检测方法比基于 LIDAR 的技术更多地被解决。由于 3D LIDAR 点云很密集,因此道路标志位置的先验信息至关重要。例如,在 [20] 中,使用基于视觉的系统来检测道路限制。事实上,由于假设道路标志位于道路边界之外,道路点从云中移除,并且只有道路边界之外的 LIDAR 点用于道路标志检测过程。在[21]中,创建了强度图。然后,具有高反射率值的像素被聚类以指示先前的道路标志位置。我们的方法类似于[22],是一个三步算法。首先,从整个激光雷达 3D 点构建一个前极坐标网格。其次,反射率数据用于构建二值前图像,在该图像上使用形态学闭合操作来识别 ROI(感兴趣区域)。之后,ROI 点被输入到 RANSAC 平面估计算法中,以估计平面的质心 c 和法线 n。最后,通过对内点数和平面法线 n 设置约束来进一步细化 ROI 候选者。每个步骤将在以下段落中描述。

前极坐标网格

旋转激光雷达测量三个参数:距离 r、方位角 φ 和垂直波束角 θ。前极坐标网格是在极坐标中构建的,具有水平(方位)视场:±φmax 和 N 行,其中 N 是 LIDAR 光束的数量(见图 1)。另外,通过设置方位角分辨率φres来定义网格的列数。对于每个网格单元 mi;j,3D 点集:
公式1
在 mi;j 内,并且保持平均强度值

感兴趣区域(ROI)的检测

为了定位潜在道路标志的位置,通过考虑每个网格单元的最大强度值来创建正面反射率图像。由于道路标志具有很强的反射性,因此对后者进行阈值处理以获得 2D 二进制图像。所选阈值是根据激光雷达制造商提供的传感器规格选择的。然后实施形态学闭合操作以将 ROI 提取为一组边界框 Bxi。

ROI 3D 点的去偏斜

二值图像上检测到的感兴趣区域现在与前网格并行使用,以提取与每个边界框 Bxi 对应的 3D 点。这些 3D 点用于估计道路标志候选的 3D 参数。然而,移动旋转激光雷达的一个典型问题是点云的失真。实际上,激光雷达完整旋转的开始和结束之间的时间差(旋转速率)大约为 0:1 秒。对于 25m=s 的自我车辆速度,旋转速率导致 2:5m 的平移间隙。为了消除这种失真,我们使用了每个点 pk 的时间戳 tk。事实上,我们的 LIDAR 与 GNSS 时钟同步,因此所有点都有时间戳。该校正分两步实施。首先,为每个 ROI 点集计算最小时间戳 tmin。然后,通过使用惯性数据(速度 v 和偏航率 w),一个 3D 点 pk = (xk; yk; zk; tk) 被修正如下:
公式2,3,4
通过假设恒定速度和偏航率运动模型来计算上述方程。

道路标志参数估计

既然我们有潜在道路标志候选的去偏斜 3D 点,我们实施了 RANSAC [23] 平面拟合算法来进一步细化检测。估计的结果是质心 c = (cx; cy; cz) 和法向量 n = (nx; ny; nz)。如果满足以下要求,则保留候选 (c; n): • 法线 n 几乎平行于行驶方向(x 轴方向)。 • RANSAC 估计的内点数在总点数上大于 0:5。 • 质心 c 到车辆的距离小于 dmax = 30m。
激光雷达 3d 点(图 2.a)到正面反射率图像的投影如图 2.b 所示。在这种情况下,我们需要检测一个路标。检测过程的应用给出了三个边界框的结果(图2.c),在应用三个选择标准后,只有其中一个(红色边界框)被认为是一个好的检测。最后,在图 2.d 中,说明了红色边界框的相应 3D 点。仅使用激光雷达传感器来检测定位系统的有效道路标志会导致存在其他反射物体的误报:例如车辆牌照、救护车上的反光条纹等。有趣的是,与高精地图可以解决这个问题,因为高精地图只包含静态对象。因此,如果对应的道路标志存在于地图中,则满足三个选择标准的检测到的道路标志被认为是有效的。

基于地图的定位

坐标系和地图描述

我们的原型地图是具有高绝对精度的第三方地图。本文中使用的地图属性是道路标记和道路标志。道路标记表示为折线,道路标志表示为 2D 多边形(三角形),我们具有质心位置。地图元素相对于全局参考框架或地图参考框架表示:
1
然而,感知数据是相对于激光雷达参考系表示的,我们知道其几何变换到自我车辆参考系:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值