jetson tx2刷机教程 (成功安装ubuntu18.04+Jetpack4.6.2+CUDA10.2+CUDNN8.2)

TX2 刷机需要准备一台ubuntu系统的电脑,没有ubuntu系统电脑在Windows电脑中安装虚拟机也可。本文教程直接使用的是ubuntu系统的电脑。

主机端(电脑端)环境配置

在主机上安装sdkmanager

  1. 下载sdkmanager
    直接点击红框中的下载即可
    在这里插入图片描述
    下载需要nvidia的账号, 没有的话可以注册一个。csdn下载,或者百度网盘下载
  2. 安装sdkmanager
    进入到sdkmanager的下载目录
    sudo apt install ./sdkmanager_XXXX.deb
    sudo apt install ./sdkmanager_1.9.0-10816_amd64.deb #举个例子 
    
    安装成功后在终端启动
    sdkmanager
    

在这里插入图片描述
登录nvidia账号
在这里插入图片描述登陆成功后,选择要刷机的型号

在这里插入图片描述

按照步骤开始刷机

STEP 01

在这里插入图片描述

如图红框所示,此时电脑还没有和tx2连接。将tx2进入强制恢复模式后,使用官方的原装线将电脑与tx2连接,连接线如图所示:
在这里插入图片描述
连接成功后sdkmanager界面如图红框1所示:
62在这里插入图片描述

在红框2中选择要安装的Jetpack版本,如图选择的是4.6.2

tx2进入强制恢复的方法:
在关机状态下按下并松开TX2的POWER键S4;按下并保持FORCE RECOVERY键S3;在此期间按下并松开RESET键S1;等待2秒后松开FORCE RECOVERY键S3。
细节:当TX2是恢复模式时,虚拟机界面右下角处的usb标志,会从灰色变成蓝色;也可在终端使用lsusb指令查看,是否能检测到NVIDIA crop这个设备,成功连接后终端显示如下:
在这里插入图片描述

STEP 02

步骤1完成后点击CONTINUE按钮进入步骤2
在这里插入图片描述
勾选左下角的同意协议,download那个不选。点击continue进入步骤3,开始下载包,下载完成后会自动安装。

STEP 03

在下载之前会要求输入主机端(电脑端)的密码
在这里插入图片描述
输入密码后会自动下载
在这里插入图片描述
当Jetson OS image 下载完成后会弹出如下界面
在这里插入图片描述

因为我们需要对tx2进行刷机(重装系统),所以这里红框1需要选择MAnual Setup -Jet送 TX2。如果不需要重装系统,只是需要重装CUDA和CUDNN这里选择Automatic Setup -Jetson TX2即可。红框2中的ip地址不要改动,这是系统为tx2接口自动分配的IP地址,每个人根据情况可能有所不同。选择手动模式后,如下图所示。在下面的红框中设置tx2的用户名和密码,然后点击Flash即开始刷机。
在这里插入图片描述
如图所示,等待Flashing进度条走完之后tx2中的ubuntu系统就安装成功。此时如果tx2有连接显示器,就会看到ubuntu系统的设置界面。此时先装到tx2进行一些系统的设置。
在这里插入图片描述

首先给tx2联网,然后换源以提高下载速度和成功率

sudo cp /etc/apt/sources.list /etc/apt/sources.list.backup  # 对源文件进行备份
sudo gedit /etc/apt/sources.list

将下面类容复制到sources.list中

deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-updates main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-security main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic-backports main restricted universe multiverse
deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main universe restricted
deb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ bionic main universe restricted

使用清华源,注意Jetson TX2 是ARM架构,源和x86版本要区分开!!!
进行更新

sudo apt-get update

操作完成后再到主机端进行操作,此时会弹出一个窗口,点击install就会出现下面的界面,等待安装即可,可能会卡99%,对尝试几次就会成功
在这里插入图片描述

刷机完成后安装深度学习工具

刷机完成后系统会自动安装python2.7和python3.6

安装jtop查看系统信息

1.通过pip安装
首先安装pip

sudo apt-get install python3-pip

然后再安装 jtop

sudo -H pip3 install -U jetson-stats

通过匹配安装通常不会成功,这时可以通过github源码安装

git clone https://github.com/rbonghi/jetson_stats.git
cd jetson_stats/
sudo python3 ./setup.py install

可能出现的错误
在使用sudo apt-get时可能会出现下面错误:
sudo apt -get 无法获取 dpkg 前端锁 (/var/lib/dpkg/lock-frontend),请查看您是否正以 root 用户运行?

解决办法
方法一

ps -e | grep apt

我这里显示

6929 pts/1    00:00:00 apt-get
6938 pts/1    00:00:00 apt-key
sudo kill 6929

方法二

sudo rm /var/lib/dpkg/lock-frontend
sudo rm /var/cache/apt/archives/lock  
sudo rm /var/lib/dpkg/lock

安装成功后在终端输入jtop即可出现以下画面,可以查看jetpack cuda,cudnn等版本信息。

安装pytorch及torchvision

安装pytorch

jetson tx2有专门的pytorch版本,,去nvidia官网下载对应的版本即可。如图,jetpack4.6的pytorch只支持python3.6.官网法下载链接通常打不开,可以去我的csdn下载,或者去百度网盘下载,密码为:
在这里插入图片描述
下载完成后,通过下面指令安装即可

## 首先安装依赖项,不然在导入pytorch时会报错
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev 
pip3 install Cython
pip3 install python 3.6 - torch-1.9.0-cp36-cp36m-linux_aarch64.whl 

遇到的问题

在终端执行下面pytorch的安装指令时,出现这个平台不支持的错误

pip3 install python 3.6 - torch-1.9.0-cp36-cp36m-linux_aarch64.whl

解决办法
安装arm架构专用的anaconda解决,aarch64版本的anaconda

安装miniconda(建议)

下载完成后进入到下载目录进行安装即可

sudo ./Archiconda3-0.2.3-Linux-aarch64.sh

这个版本的archiconda会自动在系统中安装python3.7
conda安装成功后,使用下面指令创建环境,此时一定要指定python版本为3.6

conda create -n [env name] python=3.6

创建环境可能因为网络原因多次失败,更换网络或者多尝试几次就会成功。
进入到创建的环境安装pytorch

sudo apt-get install python3-pip libopenblas-base libopenmpi-dev 
pip3 install Cython
pip3 install python3.6 - torch-1.9.0-cp36-cp36m-linux_aarch64.whl ```

可能遇到的错误
在成功安装pytorch,在执行"import trorch"时可能出现下列错误

Illegal instrution(core dumped)

解决办法
打开~/.bashrc添加系统环境变量,进行全局修改

sudo gedit ~/.bashrc

增加如下内容

export OPENBLAS_CORETYPE=ARMV8

torch安装完成后进入到python测试是否调用cuda

>>import torch
>>torch.cuda.is_available()
True     ## 返回True说明torch安装成功,并可以调用cuda加速
		 ## 如果返回False 通常是cuda和torch版本不匹配的问题

补充
添加环境变量后"llegal instrution(core dumped)"的错误也没有得到解决,可以尝试更换miniconda的版本,多尝试几个版本,下面给出另外两个linux-aarch64版本anaconda的链接
Miniforge3:https://github.com/conda-forge/miniforge/releases/tag/4.12.0-0
参考:https://blog.csdn.net/Jorbo_Li/article/details/124984936
miniconda:https://repo.anaconda.com/miniconda/
成功安装4.9.2版本

参考:https://blog.csdn.net/buxiangyaomingzi/article/details/123297295

安装torchvision

可以先尝试直接使用pip安装

pip install torchvision=='你需要法版本'

安装不成功可以使用以下方法

sudo apt-get install libjpeg-dev zlib1g-dev
git clone -b v0.7.0 https://github.com/pytorch/vision torchvision  # 版本可以自己选择
cd torchvision
sudo python3 setup.py install

编译时会耗费较多时间,耐心等待即可。
可能出现的错误

 "Couldn't load custom C++ ops. This can happen if your PyTorch and "
RuntimeError: Couldn't load custom C++ ops. This can happen if your PyTorch and torchvision versions are incompatible, 
or if you had errors while compiling torchvision from source. For further information on the compatible versions, 
check https://github.com/pytorch/vision#installation for the compatibility matrix. Please check your PyTorch version with
 torch.__version__ and your torchvision version with torchvision.__version__ and verify if they are compatible, 
 and if not please reinstall torchvision so that it matches your PyTorch install.

解决办法
暂时没解决

### JetPack 4.6.2 版本信息及功能特点 JetPack 是 NVIDIA 提供的一个软件包,用于支持其 Jetson 系列嵌入式设备的开发工作。它集成了操作系统镜像、驱动程序以及 CUDA 工具链等组件,旨在简化开发者的工作流程并提升性能。 #### 版本概述 JetPack 4.6.2 是基于 Ubuntu 18.04 LTS 构建的操作系统镜像,并针对 Jetson 平台进行了优化[^4]。该版本适用于多个 Jetson 设备型号,包括但不限于 Jetson Xavier NX 和 Jetson Nano。以下是关于 JetPack 4.6.2 的主要特性和功能: #### 主要特性 1. **CUDA 支持** - JetPack 4.6.2 集成 CUDA Toolkit 10.2,提供强大的 GPU 加速计算能力[^3]。 2. **cuDNN 库集成** - cuDNN 是 NVIDIA 推出的一种深度神经网络加速库,在 JetPack 4.6.2 中预装了 libcudnn8 对应于 CUDA 10.2 的版本。这使得开发者能够轻松部署深度学习模型而无需额外手动配置。 3. **TensorFlow 安装便利性** - TensorFlow 可通过标准 APT 包管理器安装必要的 Python 依赖项来完成设置过程[^1]。具体操作如下: ```bash sudo apt install python3-scipy -y sudo apt install python3-pandas -y sudo apt install python3-sklearn -y sudo apt install python3-seaborn -y ``` 4. **工具增强** - `jetson-stats` 被推荐作为监控硬件状态的有效工具之一[^2]。可以通过 Pip 进行快速安装: ```bash sudo -H pip install jetson-stats ``` 5. **兼容性扩展** - 此版本不仅限于特定几款 Jetson 型号使用,还向后兼容其他系列模块如 TX2 等旧版产品。这意味着即使不是最新一代硬件也能享受到近似的体验效果。 6. **固件升级路径清晰** - 用户可以从较低版本逐步迁移到更高版本而不丢失数据或者重新初始化整个项目环境。 #### 总结 综上所述,JetPack 4.6.2 不仅提供了稳定的基础架构而且还增强了对于现代 AI/ML 应用场景的支持力度。无论是初学者还是经验丰富的工程师都可以从中受益匪浅。 ```python print("JetPack 4.6.2 is ready to serve your development needs.") ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值