LLM自回归解码

文章详细介绍了自回归解码在大型语言模型如Transformer中的工作原理,包括计算概率分布、选择策略(贪婪、随机抽样和束搜索)以及可能的优化技术如温度调整和重复抑制,以提高生成文本的质量和多样性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在自然语言处理(NLP)中,大型语言模型(LLM)如Transformer进行推理时,自回归解码是一种生成文本的方式。在自回归解码中,模型在生成下一个单词时会依赖于它之前生成的单词。

使用自回归解码的公式可以表示为以下步骤:

初始化序列:设 ( x 1 , x 2 , . . . , x t − 1 ) ( x_1, x_2, ..., x_{t-1} ) (x1,x2,...,xt1) 是目前已生成的单词序列。

计算下一个单词的概率分布:使用语言模型计算在给定上下文之后下一个单词的概率分布:

[ P ( x t ∣ x 1 , x 2 , . . . , x t − 1 ) ] [ P(x_t | x_1, x_2, ..., x_{t-1}) ] [P(xtx1,x2,...,xt1)]

这一步骤通常使用softmax函数完成,它将单词的logit转换成概率分布。

选择下一个单词:根据概率分布选择下一个单词 ( x t x_t xt )。这可以通过不同的策略来完成,如:

贪婪解码(Greedy Decoding):选择具有最高概率的单词。
[ x t = arg ⁡ max ⁡ P ( x t ∣ x 1 , x 2 , . . . , x t − 1 ) ] [ x_t = \arg\max P(x_t | x_1, x_2, ..., x_{t-1}) ] [xt=argmaxP(xtx1,x2,...,xt1)]

随机抽样(Sampling):根据概率分布随机选择单词,这允许生成更多样化的文本。

束搜索(Beam Search):维护一个宽度为 ( k ) 的束(beam),在每一步选择概率最高的 ( k ) 个单词组合作为候选,然后在这些候选中选择最终的单词序列。

更新序列:将选定的单词 ( x t x_t xt ) 添加到序列中。

重复步骤:重复步骤2-4,直到遇到序列结束标记(如)或者生成了所需长度的文本。

在这里插入图片描述

在实际应用中,自回归解码可能会结合使用温度调整(Temperature Scaling),抑制重复(Repetition Penalty)等技术来改善生成文本的质量和多样性。这些技术可能会影响第3步中的概率分布,但基本的自回归机制保持不变。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

eduics

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值