机器人运动轨迹学习——GMM/GMR算法

机器人运动轨迹学习——GMM/GMR算法

  • 前置知识

    GMM的英文全称为:Gaussian mixture model,即高斯混合模型,也就是说,它是由多个高斯模型进行混合的结果:当然,这里的混合是带有权重概念的。

    • 一维高斯分布

      GMM中的个体就是高斯模型,说认真点就是高斯基函数,它还有另一个名字,径向基函数。

      对于一维变量,其高斯分布为:

      image-20240521211130226

      对应高斯概率密度的图形:

      img

      也就是说,对于一维变量x,它落在均值区间 [ u − σ , u + σ ] [u-\sigma, u+\sigma] [uσ,u+σ]的概率为68.26%

    • 多维高斯分布

      多维 Gaussian 分布的概率密度函数为:

      image-20240521211953699

      其中 μ \mu μ为均值向量, Σ \Sigma Σ为协方差矩阵

  • GMM对复杂轨迹的拟合

    一个复杂运动的表达式可由一系列简单信号的加权组合表述,我们称这些简单信号为基函数

    一些流行的基函数有:Radial Basis Functions (RBFs)Bernstein Basis FunctionsFourier Basis Functions

    其中,Radial Basis Functions (RBFs),即径向基函数,一种应用如下图所示:通过为各基函数赋予不同的权重,生成了一条相对复杂的轨迹

    img

    图片源自:Dynamic Movement Primitives介绍及Python实现与UR5机械臂仿真 - 知乎 (zhihu.com)

  • GMR的回归思想

    GMR(Gaussian mixture regression)的思想:

    对于一个输入,借用GMM进行回归,回归的结果是一个高斯分布

    也就是说,我们回归得到的结果不是一个固定的值,而是一个概率值

    以一维高斯分布为例:

    我们回归得到的结果其均值为 μ \mu μ,在 [ u − σ , u + σ ] [u-\sigma, u+\sigma] [uσ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值