使用的遗传算法和差分进化算法对MLP模型的参数寻优---python代码实现

算法简介:

遗传算法(Genetic Algorithm,GA)和差分进化算法(Differential Evolution,DE)都可以用于多层感知器(Multilayer Perceptron,MLP)模型参数的优化。MLP是一种人工神经网络,包含输入层、隐藏层和输出层,通过权重和偏差参数来学习输入数据的复杂模式。这些优化算法可以应用于优化MLP模型的参数,例如神经元的数量、隐藏层的层数、学习率、激活函数类型等。以下是使用遗传算法和差分进化算法对MLP模型参数进行优化的一般步骤:

遗传算法优化MLP参数步骤:

编码参数: 将MLP的参数(例如权重、偏置、隐藏层节点数等)编码成遗传算法的染色体。
适应度函数: 定义一个评价函数来度量MLP在训练集或交叉验证集上的性能,例如准确率、均方误差等。
遗传操作: 包括选择、交叉和变异操作,通过这些操作生成新的个体(参数组合),并根据适应度函数评估其性能。
迭代优化: 重复进行遗传操作,生成新的参数组合,并逐步优化直到达到满意的性能或达到停止条件。

差分进化算法优化MLP参数步骤:

个体表示: 将MLP的参数表示为差分进化算法的个体。
目标函数: 定义一个目标函数来衡量MLP的性能。
差分变异和交叉操作: 差分进化算法通过变异和交叉操作生成新的参数组合,再根据目标函数进行评估。
迭代搜索: 通过迭代搜索来更新参数组合,以改善MLP的性能。

在优化MLP模型参数时,这些算法可以帮助找到更好的参数组合,以提高模型的预测准确性和泛化能力。在实际应用中,需要根据问题的复杂性和数据集的特征来选择合适的算法,并进行合适的参数调整和交叉验证,以获得更好的性能结果。

MLP分类的数据集:

这里我们依旧选用阿里天池心跳数据集

python代码实现

from sklearn import neural_network as nn
import time
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import KFold
from sklearn.metrics import make_scorer,f1_score,accuracy_score, precision_score,recall_score

from sklearn.svm import SVC
from bayes_opt import BayesianOptimization
data = pd.read_csv('data.csv')
data = data.drop(columns = ['id']) #删除‘id’那一列
new_data=pd.DataFrame(columns=['heartbeat_signals','label'])
def reduce_mem_usage(df):
    start_mem = df.memory_usage().sum() / 1024**2 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type
  • 10
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
MLP(多层感知机)是一种常用的神网络模型,用于解决分类和回归问题。下面是一个简单的Python代码示例,用于实现MLP算法: ```python import numpy as np class MLP: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重 self.W1 = np.random.randn(self.input_size, self.hidden_size) self.b1 = np.zeros((1, self.hidden_size)) self.W2 = np.random.randn(self.hidden_size, self.output_size) self.b2 = np.zeros((1, self.output_size)) def forward(self, X): # 前向传播 self.z1 = np.dot(X, self.W1) + self.b1 self.a1 = np.tanh(self.z1) self.z2 = np.dot(self.a1, self.W2) + self.b2 self.a2 = self.sigmoid(self.z2) return self.a2 def backward(self, X, y, learning_rate): # 反向传播 m = X.shape[0] # 计算输出层的误差 delta2 = self.a2 - y # 计算隐藏层的误差 delta1 = np.dot(delta2, self.W2.T) * (1 - np.power(self.a1, 2)) # 更新权重和偏置 dW2 = np.dot(self.a1.T, delta2) / m db2 = np.sum(delta2, axis=0) / m dW1 = np.dot(X.T, delta1) / m db1 = np.sum(delta1, axis=0) / m self.W2 -= learning_rate * dW2 self.b2 -= learning_rate * db2 self.W1 -= learning_rate * dW1 self.b1 -= learning_rate * db1 def train(self, X, y, epochs, learning_rate): for epoch in range(epochs): # 前向传播 output = self.forward(X) # 反向传播 self.backward(X, y, learning_rate) # 计算损失函数 loss = self.loss_function(output, y) if epoch % 100 == 0: print(f"Epoch {epoch}, Loss: {loss}") def predict(self, X): # 预测 output = self.forward(X) predictions = np.round(output) return predictions def loss_function(self, y_pred, y_true): # 损失函数(交叉熵) loss = -np.mean(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred)) return loss def sigmoid(self, x): # sigmoid激活函数 return 1 / (1 + np.exp(-x)) ``` 使用示例: ```python # 创建MLP对象 mlp = MLP(input_size=2, hidden_size=4, output_size=1) # 训练数据 X_train = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y_train = np.array([[0], [1], [1], [0]]) # 训练模型 mlp.train(X_train, y_train, epochs=1000, learning_rate=0.1) # 预测数据 X_test = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) predictions = mlp.predict(X_test) print(predictions) ``` 这段代码实现了一个简单的MLP算法,用于解决逻辑门问题(XOR)。你可以根据自己的需求进行修改和扩展。希望对你有帮助!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值