高数篇:05柯西定理和泰勒公式

本文介绍了高数中的柯西定理及其应用,讲解了柯西中值定理的一个常见误区,并通过实例展示了泰勒公式的形式和区别。还探讨了泰勒公式的应用,包括如何利用泰勒公式进行极限、微分和积分的计算,以及在解决极值问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高数篇:05柯西定理和泰勒公式

定理8:柯西定理

下面提出柯西定理的定义:
在这里插入图片描述

  • 柯西定理证明误区:
    在这里插入图片描述
    上图表示这种形式的拉氏证柯西是错误的,因为上图中的两个 ξ 并不相同,而柯西定理中的两个ξ是相同的。

柯西中值定理的应用1.0

直接上栗子:
在这里插入图片描述

定理9:泰勒公式

在这里插入图片描述

  • 重点了解泰勒公式两种形式的区别区间和局部极限,前者X和X0之前是可以存在一段距离的(有限距离),而后者则是X趋向于X0且多用在极限求值极值问题的题型当中。
  • <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值