复变函数:柯西定理

这篇博客详细介绍了柯西定理,包括解析函数在实数集、开圆盘和有界区域上的应用,以及极限条件对定理适用性的扩展。重点展示了函数在闭曲线上的积分恒等于零的原理,是复分析中的核心概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

柯西定理

(1)初步形式

设函数$ f(z) 在 在 R$上解析,则:
KaTeX parse error: Undefined control sequence: \part at position 8: \int_{\̲p̲a̲r̲t̲ ̲R}f(z)dz=0
其中,$ \part R 是 点 集 是点集 R$的边界。

(2)更进一步

设$ f(z) 在 开 圆 盘 在开圆盘 \Delta 内 解 析 , 则 对 于 内解析,则对于 \Delta 中 的 每 一 条 闭 曲 线 中的每一条闭曲线 线 \gamma$,必有
∫ γ f ( z ) d z = 0 \int_{\gamma}f(z)dz=0 γf(z)dz=0

(3)最一般的情况

设$ f(z) 在 域 在域 \Delta\prime$内解析,这里$\Delta\prime 由 开 圆 盘 由开圆盘 \Delta 去 掉 有 穷 个 点 去掉有穷个点 \xi_j 后 组 成 , 如 果 对 于 所 有 的 后组成,如果对于所有的 j , , ,f(z)$满足条件
l i m z → ξ j ( z − ξ j ) f ( z ) = 0 , \mathop{lim}\limits_{z\to\xi_j}(z-\xi_j)f(z)=0, zξjlim(zξj)f(z)=0,

则(2)中的公式对于 Δ ′ \Delta^\prime Δ内的任意闭曲线$ \gamma$都成立。
本文参考了Ahlfors的复分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值