柯西定理
(1)初步形式
设函数$ f(z)
在
在
在 R$上解析,则:
KaTeX parse error: Undefined control sequence: \part at position 8: \int_{\̲p̲a̲r̲t̲ ̲R}f(z)dz=0
其中,$ \part R
是
点
集
是点集
是点集 R$的边界。
(2)更进一步
设$ f(z)
在
开
圆
盘
在开圆盘
在开圆盘 \Delta
内
解
析
,
则
对
于
内解析,则对于
内解析,则对于 \Delta
中
的
每
一
条
闭
曲
线
中的每一条闭曲线
中的每一条闭曲线 \gamma$,必有
∫
γ
f
(
z
)
d
z
=
0
\int_{\gamma}f(z)dz=0
∫γf(z)dz=0
(3)最一般的情况
设$ f(z)
在
域
在域
在域\Delta\prime$内解析,这里$\Delta\prime
由
开
圆
盘
由开圆盘
由开圆盘\Delta
去
掉
有
穷
个
点
去掉有穷个点
去掉有穷个点 \xi_j
后
组
成
,
如
果
对
于
所
有
的
后组成,如果对于所有的
后组成,如果对于所有的 j
,
,
,f(z)$满足条件
l
i
m
z
→
ξ
j
(
z
−
ξ
j
)
f
(
z
)
=
0
,
\mathop{lim}\limits_{z\to\xi_j}(z-\xi_j)f(z)=0,
z→ξjlim(z−ξj)f(z)=0,
则(2)中的公式对于
Δ
′
\Delta^\prime
Δ′内的任意闭曲线$ \gamma$都成立。
本文参考了Ahlfors的复分析