第三章微分中值定理及导数应用(柯西中值和泰勒公式)

文章探讨了柯西中值定理在函数连续性和导数之间的关系,以及泰勒公式在多项式逼近中的应用。皮亚诺型和拉格朗日型泰勒公式被比较,前者关注局部性质如极限和极值,后者处理整体性质如最值和不等式。使用泰勒公式的条件涉及函数的n阶导数及局部或整体分析。
摘要由CSDN通过智能技术生成

1、柯西中值定理

 

 

2、皮亚诺型余项泰勒公式和拉格朗日型泰勒公式

2.1 定义

 2.2共同点

1、多项式逼近,2、函数和高阶的关系

2.3 不同点

皮亚诺型余项泰勒公式:局部,如极限、极值 。拉格朗日型泰勒公式:整体,如最值、不等式

2.4什么时候用泰勒公式

1、题目或结论中有n阶导数;2、局部或整体;3、那点用的信息多就在哪儿用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值