Ubuntu20.04安装CUDA和CUDNN

CUDAGPU深度学习的运行库,那么cuDNN就是训练加速工具,两者要相互配合使用,所以一般机器学习需要训练引擎(tensorflow-gpu) + CUDA + cuDNN使用。想不安装cuDNN是不可以的,而且cuDNN版本要和CUDA版本相互搭配。

1、前置工作

查看显卡信息

nvidia-smi
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 510.108.03   Driver Version: 510.108.03   CUDA Version: 11.6     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  Off  | 00000000:01:00.0 Off |                  N/A |
| N/A   42C    P8    N/A /  N/A |      9MiB /  2048MiB |      0%      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|    0   N/A  N/A       980      G   /usr/lib/xorg/Xorg                  4MiB |
|    0   N/A  N/A      1592      G   /usr/lib/xorg/Xorg                  4MiB |
+-----------------------------------------------------------------------------+
  • 如果出现这个样式,说明已经安装显卡驱动了。通常装好的Ubuntu中都有显卡驱动✔️
  • 如果没有装驱动,Ubuntu有一种简便的装驱动方式,在软件与更新里找到附加驱动,一般来说挑一个数字版本比较大的安装即可,安装完毕重启电脑,再次输入nvidia-smi查看是否安装成功。

在输入nvidia-smi后你可以看到右上角有CUDA Version: 11.6(你的版本与我可能不一样),这不代表你的CUDA安装成功了,这个版本是CUDA的最高安装版本。

因此本文选择安装CUDA 11.3CUDNN8.2.1

CUDNN版本的选择:在下载的官网上可以看到支持CUDA 11.3CUDNN

2、安装CUDA 🔧

2.1 降低g++版本

Ubuntu 20.04默认g++9版本太高,会导致CUDA无法安装,因此要先降低g++版本

sudo apt-get install gcc-7 g++-7
 
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-7 9
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-9 1
 
sudo update-alternatives --display gcc
 
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-7 9
sudo update-alternatives --install /usr/bin/g++ g++ /usr/bin/g++-9 1
 
sudo update-alternatives --display g++

2.2 下载CUDA

CUDA官网:https://developer.nvidia.com/cuda-toolkit-archive

在这里插入图片描述
在这里插入图片描述
20.04的就用20.04的,没有就选最大的,一般是18.04。推荐用runfile安装,只需要两行命令:

wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
sudo sh cuda_11.3.0_465.19.01_linux.run

wget是下载命令
sh是执行脚本命令

下面的安装图片是用的其他博主的,关键点我标出来了
在这里插入图片描述
accept
在这里插入图片描述
安装成功则进行环境变量配置

2.3 环境变量配置⚠️

此步很重要,必须要做,否则程序会找不到cuda

打开.bashrc文件

#使用vim打开.bashrc
sudo vim ~/.bashrc
#使用记事本打开.bashrc
sudo gedit ~/.bashrc

在最后增加(注意请根据实际情况修改,你可以查看/usr/loacl目录下cuda的文件名是什么)

export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

刷新环境变量

source ~/.bashrc

检查一下CUDA是否安装正确

cat /usr/local/cuda/version.json

查看CUDA版本号

nvcc -V

3、安装CUDNN🔧

CUDNN的安装比较简单,只需要下载对应版本的安装包,拷贝文件到指定目录,给予权限即可
CUDNN官网需要注册才能下载

CUDNN官网:https://developer.nvidia.com/cudnn

在这里插入图片描述

拷贝文件+授予权限命令

sudo cp cuda/include/cudnn* /usr/local/cuda-11.3/include
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.3/lib64
sudo chmod a+r /usr/local/cuda-11.3/include/cudnn* 
sudo chmod a+r /usr/local/cuda-11.3/lib64/libcudnn*

查看cuDNN版本方法:

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

注意,这句话可能执行了没效果,那是因为新版本换位置了,需要用:

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

至此CUDACUDNN的安装结束✌

参考博客

https://blog.csdn.net/h3c4lenovo/article/details/119003405

### 如何在 Ubuntu 20.04安装 CUDA #### 准备工作 确保系统已更新至最新状态并重启计算机。对于特定版本的选择,需对比官方文档中的UbuntuCUDA兼容列表来决定适合的CUDA版本[^2]。 #### 安装 NVIDIA 驱动程序 如果尚未安装NVIDIA显卡驱动,则应先完成此步骤。可以通过查阅其他资源了解详细的安装方法,例如CSDN博客上的《Ubuntu20.04安装Nvidia显卡驱动教程》[^1]。 #### 下载 CUDA 工具包 访问[NVIDIA官方网站](https://developer.nvidia.com/cuda-downloads),选择对应的操作系统、架构、发行版以及版本号(如Ubuntu 20.04),按照提示下载适用于系统的CUDA工具包。 #### 开始安装过程 通过命令行执行以下操作来进行安装: ```bash sudo dpkg -i cuda-repo-ubuntu2004_11.3.1-1_amd64.deb sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub sudo add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /" sudo apt-get update sudo apt-get -y install cuda ``` 以上命令假设正在安装的是CUDA 11.3版本;如果是其它版本,请调整文件名URL以匹配所选版本的要求。 #### 设置环境变量 编辑`~/.bashrc`文件,在其末尾追加如下几行用于设置必要的路径: ```bash export PATH=/usr/local/cuda-11.3/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-11.3/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}} ``` 保存更改后使新配置生效: ```bash source ~/.bashrc ``` 注意这一步骤非常重要,因为忽略它可能导致TensorFlow或其他依赖于CUDA的应用无法识别GPU设备[^3]。 #### 测试安装成果 最后验证CUDA是否正确安装,可通过运行简单的测试程序实现这一点。创建一个新的Python脚本并将下面的内容复制进去: ```python import tensorflow as tf print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU'))) ``` 当输出显示可用的GPU数量大于零时即表示安装成功。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值