(看视频时顺便记的笔记,但忘了是哪个视频了,笔记中的图片也是来自这个视频的)
Diffusion模型目前最常用的领域为图像生成,即生成和数据库中图像类似的图像,目前也有根据文字生成图像等应用,其本质是个概率论模型。
在此之前,一般用GAN(生成对抗型神经网络)来做图像生成。但使用GAN有如下几个缺陷:
1.需要分别训练两个网络(生成器和判别器),难度大。
2.难以判断是否收敛(因为生成器和判别器都在同时更新)。
3.训练目标不明确,由于生成器只需要骗过判别器,所以可能会使训练结果和理想结果相差甚远。
4.难以泛化,生成结果的多样性较差。
扩散和复原是Diffusion模型中最重要的两个概念。首先明确一点,神经网络对于某一类图像的学习和生成实质上是在学习图像中像素值的分布,并生成相似的分布的过程。而扩散的过程实质上是在数据中不断加入满足高斯分布的随机噪音,直到图像变为纯噪音。而将这一过程翻转,就是从纯噪音中还原出所需图像的过程,而这一过程正是神经网络所需要学习的。
扩散过程:在图像中不断加入噪声,并记录每一时刻加噪声后的结果。
首先