Diffusion扩散模型 学习笔记

本文介绍了Diffusion模型在图像生成中的应用,尤其是如何通过贝叶斯公式处理从噪声到原始图像的反向扩散过程,以及神经网络在预测噪声参数和训练中的角色。模型的核心是预测噪声值,尽管最终结果类似降噪,但实际上是学习如何组合正态分布生成图像。
摘要由CSDN通过智能技术生成

(看视频时顺便记的笔记,但忘了是哪个视频了,笔记中的图片也是来自这个视频的)

Diffusion模型目前最常用的领域为图像生成,即生成和数据库中图像类似的图像,目前也有根据文字生成图像等应用,其本质是个概率论模型。

在此之前,一般用GAN(生成对抗型神经网络)来做图像生成。但使用GAN有如下几个缺陷:

1.需要分别训练两个网络(生成器和判别器),难度大。

2.难以判断是否收敛(因为生成器和判别器都在同时更新)。

3.训练目标不明确,由于生成器只需要骗过判别器,所以可能会使训练结果和理想结果相差甚远。

4.难以泛化,生成结果的多样性较差。

扩散和复原是Diffusion模型中最重要的两个概念。首先明确一点,神经网络对于某一类图像的学习和生成实质上是在学习图像中像素值的分布,并生成相似的分布的过程。扩散的过程实质上是在数据中不断加入满足高斯分布的随机噪音,直到图像变为纯噪音。而将这一过程翻转,就是从纯噪音中还原出所需图像的过程,而这一过程正是神经网络所需要学习的。

扩散过程:在图像中不断加入噪声,并记录每一时刻加噪声后的结果。

首先

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值