SP3928 MDIGITS - Counting Digits 题解
题目链接:SP3928 MDIGITS - Counting Digits
题意:
给定两个整数 a a a 和 b b b,求 a a a 和 b b b 之间的所有数字中 0 0 0 ~ 9 9 9 出现次数。
例如, a a a = 1024 1024 1024, b b b = 1032 1032 1032,则 a a a 和 b b b 之间共有 9 9 9 个数如下:
1024 1025 1026 1027 1028 1029 1030 1031 1032
其中
0
出现 10 10 10 次,1
出现 10 10 10 次,2
出现 7 7 7 次,3
出现 3 3 3 次等等……
数位dp的基础题
设
f
i
f_i
fi 表示满
i
i
i 位数字(包括前导零),每种数字的出现次数
f
1
=
1
f
i
=
f
i
−
1
×
10
+
1
0
i
−
1
f_1 = 1 \\f_i = f_{i-1} \times 10 + 10^{i-1}
f1=1fi=fi−1×10+10i−1
其中
f
i
−
1
×
10
f_{i-1}\times 10
fi−1×10 是
i
−
1
i-1
i−1 位及以下位的贡献
例如 7000 ∼ 7999 , 8000 ∼ 8999 \tt{7000\sim7999,~8000\sim8999} 7000∼7999, 8000∼8999
显然 000 ∼ 999 \tt{000\sim999} 000∼999出现了 10 10 10 次
而 1 0 i − 1 10^{i-1} 10i−1 是第 i i i 位的贡献,比如 9000 ∼ 9999 \tt{9000 \sim 9999} 9000∼9999 ,第 4 4 4 位的 9 \tt{9} 9 出现了 1 0 3 10^3 103 次
然后我们再考虑怎么获得答案
首先 [ l , r ] [l,r] [l,r] 可以拆分为 [ 0 , l − 1 ] , [ 0 , r ] [0,l-1],~[0,r] [0,l−1], [0,r] 两个询问(基本的容斥)
然后考虑一个数 A B C ‾ \tt{\overline{ABC}} ABC ,不难发现, 0 \tt{0} 0 到 A 00 ‾ \tt{\overline{A00}} A00 每个非最高位数都出现了 A \tt{A} A × f 2 \times f_2 ×f2 次
而最高位 0 ∼ A − 1 \tt{0\sim A-1} 0∼A−1 都各出现了 1 0 2 10^2 102 次
注:这里 0 \tt 0 0 是前导零,所以其实不会算进去,这里只是为了方便分析
那么 A \tt{A} A 呢?不难发现它出现了 B C ‾ + 1 \tt{\overline{BC}+1} BC+1 次
对于 B \tt{B} B ,同样的处理方式。
怎么一股机翻的味道
然后我们就搞定这道题了
时间复杂度 O ( Q l b ) O(Qlb) O(Qlb)
其中 l l l 表示最大位数, b b b 表示进制,这题里为 10 10 10
代码:(非dfs写法)
#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <iomanip>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)()
int a,b,mi[25],cnt1[25],cnt2[25],num[25],f[25];
void clear()
{
memset(cnt1,0,sizeof(cnt1));
memset(cnt2,0,sizeof(cnt2));
}
void solve(int x,int *cnt)
{
int len=0;
memset(num,0,sizeof(num));
while(x)
{
num[++len]=x%10;
x/=10;
}
for(int i=len; i>=1; i--)
{
for(int j=0; j<=9; j++)
cnt[j]+=f[i-1]*num[i];
for(int j=0; j<num[i]; j++)
cnt[j]+=mi[i-1];
int res=0;
for(int j=i-1; j>=1; j--)
{
res = res * 10 + num[j];
}
cnt[num[i]]+=res+1;
cnt[0]-=mi[i-1];
}
}
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
// freopen("check.in","r",stdin);
// freopen("check.out","w",stdout);
mi[0]=1;
for(int i=1; i<=18; i++)
{
f[i]=f[i-1]*10+mi[i-1];
mi[i]=10*mi[i-1];
}
while(cin >> a >> b)
{
if(!a&&!b)return 0;
if(a>b)swap(a,b);
clear();
solve(a-1,cnt1);solve(b,cnt2);
for(int i=0; i<=9; i++)
cout << cnt2[i]-cnt1[i] << " \n"[i==9];
}
return 0;
}
转载请说明出处