23考研李林880第九章曲线积分与曲面积分综合题3-20

视频讲解:23考研李林880第九章曲线积分与曲面积分综合题3-20

题目

f ( x , y ) f(x,y) f(x,y) D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D=\left\{ \left( x,y \right) |x^2+y^2\leq 1 \right\} D={(x,y)x2+y21}上有二阶连续偏导数,且 ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 = e − ( x 2 + y 2 ) \frac{\partial ^2f}{\partial x^2}+\frac{\partial ^2f}{\partial y^2}=e^{-\left( x^2+y^2 \right)} x22f+y22f=e(x2+y2),计算 I = ∬ D ( x ∂ f ∂ x + y ∂ f ∂ y ) d x d y I=\iint\limits_D{\left( x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y} \right) dxdy} I=D(xxf+yyf)dxdy

解答

将二重积分做极坐标代换
∬ D ( x ∂ f ∂ x + y ∂ f ∂ y ) d x d y = ∫ 0 2 π d θ ∫ 0 1 ( r cos ⁡ θ ⋅ ∂ f ∂ x + r sin ⁡ θ ⋅ ∂ f ∂ y ) ⋅ r d r \iint\limits_D{\left( x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y} \right) dxdy}=\int_0^{2\pi}{d\theta}\int_0^1{\left( r\cos \theta \cdot \frac{\partial f}{\partial x}+r\sin \theta \cdot \frac{\partial f}{\partial y} \right)}\cdot rdr D(xxf+yyf)dxdy=02πdθ01(rcosθxf+rsinθyf)rdr
交换积分次序,先对 θ \theta θ进行积分,然后将一个 r r r移到外积分上
∫ 0 1 d r ∫ 0 2 π ( r cos ⁡ θ ⋅ ∂ f ∂ x + r sin ⁡ θ ⋅ ∂ f ∂ y ) ⋅ r d θ = ∫ 0 1 r d r ∫ 0 2 π ( r cos ⁡ θ ⋅ ∂ f ∂ x + r sin ⁡ θ ⋅ ∂ f ∂ y ) d θ \int_0^1{dr}\int_0^{2\pi}{\left( r\cos \theta \cdot \frac{\partial f}{\partial x}+r\sin \theta \cdot \frac{\partial f}{\partial y} \right)}\cdot rd\theta =\int_0^1{rdr}\int_0^{2\pi}{\left( r\cos \theta \cdot \frac{\partial f}{\partial x}+r\sin \theta \cdot \frac{\partial f}{\partial y} \right)}d\theta 01dr02π(rcosθxf+rsinθyf)rdθ=01rdr02π(rcosθxf+rsinθyf)dθ
先来计算内积分,这里r为定值
∫ 0 2 π ( r cos ⁡ θ ⋅ ∂ f ∂ x + r sin ⁡ θ ⋅ ∂ f ∂ y ) d θ \int_0^{2\pi}{\left( r\cos \theta \cdot \frac{\partial f}{\partial x}+r\sin \theta \cdot \frac{\partial f}{\partial y} \right)}d\theta 02π(rcosθxf+rsinθyf)dθ
由弧长公式可得 r ⋅ d θ = d s r\cdot d\theta =ds rdθ=ds(这里 d s ds ds其正负视为与 d θ d\theta dθ的正负相对应),如图所示,所以对角度 θ \theta θ的积分可以转换为对半径为r的圆弧的线积分,该圆弧记为L,并且由于角度 θ \theta θ是从 0 0 0 2 π 2\pi 2π变化的吗,所以L是以 ( r , 0 ) (r,0) (r,0)为起点逆时针绕一圈再回到终点 ( r , 0 ) (r,0) (r,0)
在这里插入图片描述

∴ ∫ 0 2 π ( r cos ⁡ θ ⋅ ∂ f ∂ x + r sin ⁡ θ ⋅ ∂ f ∂ y ) d θ = ∫ L ( ∂ f ∂ x ⋅ cos ⁡ θ ⋅ d s + ∂ f ∂ y ⋅ sin ⁡ θ ⋅ d s ) \therefore \int_0^{2\pi}{\left( r\cos \theta \cdot \frac{\partial f}{\partial x}+r\sin \theta \cdot \frac{\partial f}{\partial y} \right)}d\theta =\int_L{\left( \frac{\partial f}{\partial x}\cdot \cos \theta \cdot ds+\frac{\partial f}{\partial y}\cdot \sin \theta \cdot ds \right)} 02π(rcosθxf+rsinθyf)dθ=L(xfcosθds+yfsinθds)
由于 d s ds ds是很小一段的弧长,所以可以认为是和圆弧相切的,以 d s ds ds为斜边做一个直角三角形
在这里插入图片描述
放大看
在这里插入图片描述
可得 d s ⋅ sin ⁡ θ = − d x ds\cdot \sin \theta =-dx dssinθ=dx(为什么会有负号要注意x的变化和前面角度的变化相对应), d s ⋅ cos ⁡ θ = d y ds\cdot \cos \theta =dy dscosθ=dy
∴ ∫ L ( ∂ f ∂ x ⋅ cos ⁡ θ ⋅ d s + ∂ f ∂ y ⋅ sin ⁡ θ ⋅ d s ) = ∫ L ( ∂ f ∂ x d y − ∂ f ∂ y d x ) \therefore \int_L{\left( \frac{\partial f}{\partial x}\cdot \cos \theta \cdot ds+\frac{\partial f}{\partial y}\cdot \sin \theta \cdot ds \right)}=\int_L{\left( \frac{\partial f}{\partial x}dy-\frac{\partial f}{\partial y}dx \right)} L(xfcosθds+yfsinθds)=L(xfdyyfdx)
其实这里也可以通过做圆弧的单位法向量 n ⃗ = ( c o s θ , s i n θ ) \vec{n}=(cos\theta,sin\theta) n =(cosθ,sinθ)(方向向外),如图所示,然后将其逆时针旋转90°再乘以 d s ds ds获得对应的 d x , d y dx,dy dx,dy分量
在这里插入图片描述
当然还可以套用方向余弦的那个公式进行两类积分的转换,其中 θ \theta θ是与y轴的夹角,与x轴的夹角就是 θ + π 2 \theta +\frac{\pi}{2} θ+2π,则 cos ⁡ ( θ + π 2 ) = − sin ⁡ θ \cos \left( \theta +\frac{\pi}{2} \right) =-\sin \theta cos(θ+2π)=sinθ

然后,我们对于那个线积分的计算可以用格林公式,记曲线L围成的区域为 D L D_L DL
∴ ∫ L ( ∂ f ∂ x d y − ∂ f ∂ y d x ) = ∬ D L ( ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 ) d x d y \therefore \int_L{\left( \frac{\partial f}{\partial x}dy-\frac{\partial f}{\partial y}dx \right)}=\iint\limits_{D_L}{\left( \frac{\partial ^2f}{\partial x^2}+\frac{\partial ^2f}{\partial y^2} \right) dxdy} L(xfdyyfdx)=DL(x22f+y22f)dxdy
带入题目所给的条件得
∬ D L ( ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 ) d x d y = ∬ D L e − ( x 2 + y 2 ) d x d y \iint\limits_{D_L}{\left( \frac{\partial ^2f}{\partial x^2}+\frac{\partial ^2f}{\partial y^2} \right) dxdy}=\iint\limits_{D_L}{e^{-\left( x^2+y^2 \right)}dxdy} DL(x22f+y22f)dxdy=DLe(x2+y2)dxdy
做极坐标变换,注意积分区域是半径为 r r r的圆,为了避免和被积函数中的混淆,被积函数中采用 ρ \rho ρ来表示极径,即x与y是做的如下代换
{ x = ρ cos ⁡ θ y = ρ sin ⁡ θ \left\{ \begin{array}{l} x=\rho \cos \theta\\ y=\rho \sin \theta\\ \end{array} \right. {x=ρcosθy=ρsinθ

∬ D L e − ( x 2 + y 2 ) d x d y = ∫ 0 2 π d θ ∫ 0 r ρ e − ρ 2 d ρ = − π ( e − r 2 − 1 ) \iint\limits_{D_L}{e^{-\left( x^2+y^2 \right)}dxdy}=\int_0^{2\pi}{d\theta}\int_0^r{\rho e^{-\rho ^2}d\rho}=-\pi \left( e^{-r^2}-1 \right) DLe(x2+y2)dxdy=02πdθ0rρeρ2dρ=π(er21)

我们这里算得的是内积分,即
∫ 0 2 π ( r cos ⁡ θ ⋅ ∂ f ∂ x + r sin ⁡ θ ⋅ ∂ f ∂ y ) d θ = − π ( e − r 2 − 1 ) \int_0^{2\pi}{\left( r\cos \theta \cdot \frac{\partial f}{\partial x}+r\sin \theta \cdot \frac{\partial f}{\partial y} \right)}d\theta =-\pi \left( e^{-r^2}-1 \right) 02π(rcosθxf+rsinθyf)dθ=π(er21)
再算外积分

∫ 0 1 − π ( e − r 2 − 1 ) ⋅ r d r = π 2 e − 1 \int_0^1{-\pi \left( e^{-r^2}-1 \right) \cdot rdr}=\frac{\pi}{2}e^{-1} 01π(er21)rdr=2πe1

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值