23考研李林880第九章曲线积分与曲面积分综合题3-21

视频讲解:23考研李林880第九章曲线积分与曲面积分综合题3-21

题目

f ( x , y ) f(x,y) f(x,y) x 2 + y 2 ≤ 1 x^2+y^2\leq1 x2+y21上有一阶连续偏导数,且在边界上取值为零,证明:
lim ⁡ t → 0 + − 1 2 π ∬ D x f x ′ ( x , y ) + y f y ′ ( x , y ) x 2 + y 2 d x d y = f ( 0 , 0 ) \underset{t\rightarrow 0^+}{\lim}\frac{-1}{2\pi}\iint\limits_D{\frac{xf_x'\left( x,y \right) +yf_y'\left( x,y \right)}{x^2+y^2}dxdy}=f\left( 0,0 \right) t0+lim2π1Dx2+y2xfx(x,y)+yfy(x,y)dxdy=f(0,0)
其中 D : t 2 ≤ x 2 + y 2 ≤ 1 , t > 0 D: t^2\leq x^2+y^2\leq 1, t>0 D:t2x2+y21,t>0

解答

对二重积分做极坐标代换
∬ D x f x ′ ( x , y ) + y f y ′ ( x , y ) x 2 + y 2 d x d y = ∫ 0 2 π d θ ∫ t 1 r cos ⁡ θ ⋅ f x ′ ( x , y ) + r sin ⁡ θ ⋅ f y ′ ( x , y ) r 2 r d r = ∫ 0 2 π d θ ∫ t 1 [ cos ⁡ θ ⋅ f x ′ ( x , y ) + sin ⁡ θ ⋅ f y ′ ( x , y ) ] d r = ∫ 0 2 π d θ ∫ t 1 [ f x ′ ( x , y ) ⋅ cos ⁡ θ + f y ′ ( x , y ) ⋅ sin ⁡ θ ] d r \begin{aligned} \iint\limits_D{\frac{xf_x'\left( x,y \right) +yf_y'\left( x,y \right)}{x^2+y^2}dxdy}&=\int_0^{2\pi}{d\theta}\int_t^1{\frac{r\cos \theta \cdot f_x'\left( x,y \right) +r\sin \theta \cdot f_y'\left( x,y \right)}{r^2}rdr} \\ &=\int_0^{2\pi}{d\theta}\int_t^1{\left[ \cos \theta \cdot f_x'\left( x,y \right) +\sin \theta \cdot f_y'\left( x,y \right) \right] dr} \\ &=\int_0^{2\pi}{d\theta}\int_t^1{\left[ f_x'\left( x,y \right) \cdot \cos \theta + f_y'\left( x,y \right) \cdot \sin \theta \right ] dr} \end{aligned} Dx2+y2xfx(x,y)+yfy(x,y)dxdy=02πdθt1r2rcosθfx(x,y)+rsinθfy(x,y)rdr=02πdθt1[cosθfx(x,y)+sinθfy(x,y)]dr=02πdθt1[fx(x,y)cosθ+fy(x,y)sinθ]dr
其中
f x ′ ( x , y ) ⋅ cos ⁡ θ = ∂ f ∂ x ⋅ ∂ x ∂ r f_x'\left( x,y \right) \cdot \cos \theta =\frac{\partial f}{\partial x}\cdot \frac{\partial x}{\partial r} fx(x,y)cosθ=xfrx
f y ′ ( x , y ) ⋅ sin ⁡ θ = ∂ f ∂ y ⋅ ∂ y ∂ r f_y'\left( x,y \right) \cdot \sin \theta =\frac{\partial f}{\partial y}\cdot \frac{\partial y}{\partial r} fy(x,y)sinθ=yfry
∴ f x ′ ( x , y ) ⋅ cos ⁡ θ + f y ′ ( x , y ) ⋅ sin ⁡ θ = ∂ f ∂ x ⋅ ∂ x ∂ r + ∂ f ∂ y ⋅ ∂ y ∂ r \therefore f_x'\left( x,y \right) \cdot \cos \theta +f_y'\left( x,y \right) \cdot \sin \theta =\frac{\partial f}{\partial x}\cdot \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y}\cdot \frac{\partial y}{\partial r} fx(x,y)cosθ+fy(x,y)sinθ=xfrx+yfry
根据复合函数求导法则,我们知道
∂ f ∂ r = ∂ f ∂ x ⋅ ∂ x ∂ r + ∂ f ∂ y ⋅ ∂ y ∂ r \frac{\partial f}{\partial r}=\frac{\partial f}{\partial x}\cdot \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y}\cdot \frac{\partial y}{\partial r} rf=xfrx+yfry
我们这里其实就是将复合函数求导法则反过来用
∴ ∫ t 1 [ cos ⁡ θ ⋅ f x ′ ( x , y ) + sin ⁡ θ ⋅ f y ′ ( x , y ) ] d r = ∫ t 1 f r ′ ( r cos ⁡ θ , r sin ⁡ θ ) d r = f ( r cos ⁡ θ , r sin ⁡ θ ) ∣ t 1 = f ( cos ⁡ θ , sin ⁡ θ ) − f ( t cos ⁡ θ , t sin ⁡ θ ) \begin{aligned} \therefore \int_t^1{\left[ \cos \theta \cdot f_x'\left( x,y \right) +\sin \theta \cdot f_y'\left( x,y \right) \right] dr}&=\int_t^1{f_r'\left( r\cos \theta ,r\sin \theta \right) dr} \\ &=f\left( r\cos \theta ,r\sin \theta \right) \mid_{t}^{1} \\ &=f\left( \cos \theta ,\sin \theta \right) -f\left( t\cos \theta ,t\sin \theta \right) \end{aligned} t1[cosθfx(x,y)+sinθfy(x,y)]dr=t1fr(rcosθ,rsinθ)dr=f(rcosθ,rsinθ)t1=f(cosθ,sinθ)f(tcosθ,tsinθ)
f ( x , y ) f(x,y) f(x,y) x 2 + y 2 ≤ 1 x^2+y^2\leq1 x2+y21边界上取值为零
所以 f ( c o s θ , s i n θ ) = 0 f(cos\theta , sin\theta)=0 f(cosθ,sinθ)=0
∴ ∫ t 1 [ cos ⁡ θ ⋅ f x ′ ( x , y ) + sin ⁡ θ ⋅ f y ′ ( x , y ) ] d r = − f ( t cos ⁡ θ , t sin ⁡ θ ) \therefore \int_t^1{\left[ \cos \theta \cdot f_x'\left( x,y \right) +\sin \theta \cdot f_y'\left( x,y \right) \right] dr}=-f\left( t\cos \theta ,t\sin \theta \right) t1[cosθfx(x,y)+sinθfy(x,y)]dr=f(tcosθ,tsinθ)
∴ ∬ D x f x ′ ( x , y ) + y f y ′ ( x , y ) x 2 + y 2 d x d y = − ∫ 0 2 π f ( t cos ⁡ θ , t sin ⁡ θ ) d θ \therefore \iint\limits_D{\frac{xf_x'\left( x,y \right) +yf_y'\left( x,y \right)}{x^2+y^2}dxdy}=-\int_0^{2\pi}{f\left( t\cos \theta ,t\sin \theta \right) d\theta} Dx2+y2xfx(x,y)+yfy(x,y)dxdy=02πf(tcosθ,tsinθ)dθ
因为 f ( x , y ) f(x,y) f(x,y) x 2 + y 2 ≤ 1 x^2+y^2\leq1 x2+y21上有一阶连续偏导数,所以 f ( x , y ) f(x,y) f(x,y)在该区域上连续
由积分中值定理可得
∫ 0 2 π f ( t cos ⁡ θ , t sin ⁡ θ ) d θ = f ( t cos ⁡ ξ , t sin ⁡ ξ ) ⋅ 2 π  其中 ξ ∈ ( 0 , 2 π ) \int_0^{2\pi}{f\left( t\cos \theta ,t\sin \theta \right) d\theta}=f\left( t\cos \xi ,t\sin \xi \right) \cdot 2\pi \ \text{其中}\xi \in \left( 0,2\pi \right) 02πf(tcosθ,tsinθ)dθ=f(tcosξ,tsinξ)2π 其中ξ(0,2π)
∴ lim ⁡ t → 0 + f ( t cos ⁡ ξ , t sin ⁡ ξ ) = f ( 0 , 0 ) \therefore \underset{t\rightarrow 0^+}{\lim}f\left( t\cos \xi ,t\sin \xi \right) =f\left( 0,0 \right) t0+limf(tcosξ,tsinξ)=f(0,0)
带回去即可证出
lim ⁡ t → 0 + − 1 2 π ∬ D x f x ′ ( x , y ) + y f y ′ ( x , y ) x 2 + y 2 d x d y = f ( 0 , 0 ) \underset{t\rightarrow 0^+}{\lim}\frac{-1}{2\pi}\iint\limits_D{\frac{xf_x'\left( x,y \right) +yf_y'\left( x,y \right)}{x^2+y^2}dxdy}=f\left( 0,0 \right) t0+lim2π1Dx2+y2xfx(x,y)+yfy(x,y)dxdy=f(0,0)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值