VLM,LLM等大模型如何应用于机器人控制(以强化学习为例)

本文介绍了如何利用VLM进行图像理解,LLM生成任务指令,DQN执行动作并根据反馈调整策略,使得机器人具备自我学习和泛化能力,显著提升其技能应用效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

VLM:视觉语义模型,准确识别图中有什么,处于什么状态,以及不同物体之间的关联。

LLM:语言大模型,可以针对当前的环境,自动生成可执行的任务,或者将人类指令重新分成可执行的子任务。

以下图为例:将状态S传递给VLM模型 ,通过语义分析知道图中有什么物体,以及机器人在干什么。再将这个信息传递给LLM模型,由它决定,接下来做什么任务合适,再将相关信息全部传递给DQN(一种强化学习模型),由该模型输出相应的动作A(如机械臂不同关节移动的角度,移动机器人的移动方位等),执行相应动作后,会出现新的状态S',再将这个状态传递给VLM,重新对当前状态进行语义分析,并通过LM模型和之前LLM模型给出的任务指示进行对比,得到语义之间相关性的高低,最终给出奖励R,再将奖励R传递给DQN,不断调整策略Π。

总结:从应用效果上看,相对于传统方法,大模型在机器人上的应用,让机器人具有了真正意义上自我技能的学习。比方说,‘抓’ 这个技能,传统放法抓一个物体就要重新训练一次,或者说一次训练多个物体,但并不能抓没有训练过的物体,该方法不止可以抓训练过的物体(数量比传统方法多的多),对于没有训练过的物体也有很好的泛化性, 

### 连接视觉语言模型与运动规划以实现细粒度机器人操作 为了实现通过语义关键点表示连接视觉语言模型(VLM)与运动规划(KMP),从而完成细粒度的机器人操作,可以考虑以下几个方面: #### 1. 高维决策到Meta-action的一对一映射 利用Meta-action Encoder \( \phi \),能够将大语言模型(LLM)输出的高维度决策转化为具体的元动作(meta-action)。这一过程依赖于可学习嵌入矩阵\( E_{\text{act}} \),它实现了从抽象的语言描述到具体物理行为的有效转换[^1]。 #### 2. 自然指导与自我指导相结合的方法 借鉴《Semi-Instruct: Bridging Natural-Instruct and Self-Instruct for Code Large Language Models》中的方法论,可以通过半监督的方式构建训练数据集。这种方法不仅增强了模型对于复杂任务的理解能力,还提高了其泛化性能[^2]。 #### 3. 数据驱动的知识获取机制 基于《Knowing When to Ask -- Bridging Large Language Models and Data》,提出了一个框架来决定何时向外部数据库查询额外的信息。这种策略有助于减少错误率并提升系统的可靠性[^3]。 #### 技术实现路径 以下是可能的技术路线图以及其实现方式: - **语义解析模块**:采用预训练好的多模态模型作为基础架构,输入图像或视频片段提取场景内的对象及其属性特征; - **关键点检测网络**:设计专门用于捕捉目标物体上特定部位位置关系的关键点预测算法; - **交互逻辑生成器**:借助强化学习或者模仿学习技术教导机械臂按照指定顺序执行一系列子任务直至达成最终目的。 ```python def execute_fine_grained_manipulation(vlm_output, kmp_plan): """ Execute fine-grained robotic manipulation based on VLM output and KMP plan. Args: vlm_output (dict): Output from the visual language model containing semantic keypoints. kmp_plan (list): Sequence of kinematic motion planning steps. Returns: bool: True if successful; False otherwise. """ meta_actions = [] for step in kmp_plan: action_embedding = phi(step) # Convert high-dimensional decision into a meta-action via φ meta_action = decode_meta_action(action_embedding) meta_actions.append(meta_action) success = perform_robotic_operations(meta_actions, vlm_output['keypoints']) return success def decode_meta_action(embedding_vector): """Decode an embedding vector back into its corresponding physical operation.""" pass # Placeholder function def perform_robotic_operations(operations, keypoints): """Perform operations according to given sequence while considering detected keypoints.""" pass # Placeholder function ``` 上述伪代码展示了如何结合来自VLM的结果与由KMP制定的动作序列共同指引实际设备运作的过程。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值