代数余子式怎么求

代数余子式是矩阵中每个元素的代数余数,可以通过以下步骤求得:

1. 找到该元素所在的行和列,将其删除,得到一个新的矩阵。

2. 计算新矩阵的行列式,乘以(-1)^(行号+列号),即为该元素的代数余子式。

例如


对于矩阵 A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],求元素A[2][1]的代数余子式:

1. 删除第2行和第1列,得到新矩阵B = [[4, 6], [7, 9]]。

2. 计算新矩阵B的行列式:det(B) = 4*9 - 6*7 = 6。

3. 乘以(-1)^(2+1) = -1,得到A[2][1]的代数余子式为-6。

例如


对于矩阵C = [[2, 3], [4, 5]],求元素C[1][0]的代数余子式:

1. 删除第1行和第0列,得到新矩阵D = [[4]]。

2. 计算新矩阵D的行列式:det(D) = 4。

3. 乘以(-1)^(1+0) = -1,得到C[1][0]的代数余子式为-4。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会做饭的网络工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值