生成式分类器 和 判别式分类器 是两种不同的分类模型,在处理分类任务时有不同的建模思路。下面我们详细解释它们的区别:
生成式分类器(Generative Classifiers)
生成式分类器,比如 朴素贝叶斯,尝试建模数据的生成过程,即给定类别标签 y y y,特征向量 x x x 是如何生成的。生成式分类器的目标是学习联合概率分布 p ( x , y ) p(x, y) p(x,y),即:
p ( x , y ) = p ( x ∣ y ) p ( y ) p(x, y) = p(x | y) p(y) p(x,y)=p(x∣y)p(y)
其中:
- p ( x ∣ y ) p(x | y) p(x∣y) 是类 y y y 的条件下,特征向量 x x x 的概率分布。即该类是如何“生成”特征 x x x 的。
- p ( y ) p(y) p(y) 是类 y y y 的先验概率。
通过贝叶斯公式,生成式模型可以进一步计算后验概率 p ( y ∣ x ) p(y|x) p(y∣x),即给定特征 x x x,类别 y y y 的概率:
p ( y ∣ x ) ∝ p ( x ∣ y ) p ( y ) p(y | x) \propto p(x | y) p(y) p(y∣x)∝p(x∣y)p(y)
总结: 生成式分类器试图全面建模特征向量 x x x 的生成过程,然后根据生成过程进行分类。
判别式分类器(Discriminative Classifiers)
与生成式模型不同,判别式分类器直接建模后验概率 p ( y ∣ x ) p(y|x) p(y∣x),而不是考虑特征是如何生成的。例如 逻辑回归 或 支持向量机 (SVM) 就是典型的判别式模型。判别式分类器只关注类别标签 y y y 和特征向量 x x x 之间的关系,不会尝试建模特征 x x x 的生成过程。
在判别式分类器中,我们直接用给定的特征 x x x 来预测类别标签 y y y,即直接估计后验概率 p ( y ∣ x ) p(y | x) p(y∣x)。
总结: 判别式分类器不建模特征生成过程,专注于直接找到输入特征 x x x 和输出类别 y y y 之间的边界或关系,模型更直接地处理分类任务。
具体的差异
-
生成式模型:
- 目标:学习联合概率 p ( x , y ) p(x, y) p(x,y)。
- 步骤:首先建模 p ( x ∣ y ) p(x|y) p(x∣y) 和 p ( y ) p(y) p(y),然后通过贝叶斯公式得到 p ( y ∣ x ) p(y|x) p(y∣x)。
- 优势:当需要生成数据时有更好的表现,并且对缺失数据或数据的结构特性(如时间序列)处理较好。
-
判别式模型:
- 目标:直接学习 p ( y ∣ x ) p(y|x) p(y∣x),即通过特征预测类别标签。
- 步骤:不考虑特征的生成,直接学习从 x x x 到 y y y 的映射关系。
- 优势:模型更简单,不需要考虑特征生成过程,通常在分类任务上有更好的性能,尤其是在数据维度较高的情况下。
举个例子
-
生成式分类器:朴素贝叶斯:我们首先计算每个类别的先验概率 p ( y ) p(y) p(y),然后计算每个类别下特征的条件概率 p ( x ∣ y ) p(x|y) p(x∣y),最后使用贝叶斯定理计算后验概率 p ( y ∣ x ) p(y|x) p(y∣x)。
-
判别式分类器:逻辑回归:我们直接通过优化损失函数(如对数损失)来找到能够最大化后验概率 p ( y ∣ x ) p(y|x) p(y∣x) 的参数,而不去关心如何生成特征 x x x。
结论
- 生成式分类器 模拟生成特征的过程,并通过贝叶斯公式进行分类。
- 判别式分类器 直接建模特征和类别之间的关系,通常更简单有效。