初中生也能看懂——什么是计算机视觉

这篇文章主要将介绍计算机视觉的入门知识,即计算机是怎么具有视觉能力的。文章中会尽可能少地使用专业名词,概念通俗易懂,且配有图片帮助理解。感兴趣就接着读下去吧~

计算机视觉的本质

大家总是喊着计算机视觉、识别物体,听起来挺神秘的吼。但实际上,计算机视觉的本质只有两个字:统计

为什么是统计呢?请继续往下看吧~

人类的视觉系统 VS 计算机的视觉系统

在这里插入图片描述
计算机与人脑不同的是,人脑的功能非常的多,包括记忆、计算、思考、控制、调节等等。但计算机就不一样了。别看计算机那么复杂,其实它穷极一生也只会做两件事情:存储和计算。存储就是把看到的图片保存起来。但与人不同的是,计算机只能识别和保存二进制的数字,也就是 0 和 1 组成的数据流,因此需要用一种特定的规则来将人眼中的色彩转换为 0 和 1 组成的数据流,我们接下来会讲;计算则可以理解为将这些数据进行处理,用统计的方法得到与颜色相关的特征信息,进而完成目标识别。之后会举例进行具体说明。

颜色空间

前面提到,由于计算机只认得 0 和 1,因此人们想到了将这一串数字分成长度相等的段,每一段都可以表示一个像素点的颜色信息。这便是颜色空间的概念。其中最容易理解、最常见的颜色空间为 RGB(Red Green Blue) 颜色空间。
在这里插入图片描述
由于红、绿、蓝是三基色,其它颜色可以通过这三种颜色合成。因此,人们提出,可以用24位0和1表示一个像素点的颜色,其中前8位表示红色分量( R )的大小、中间8位表示绿色分量(G)的大小、后面8位表示蓝色(B)分量的大小。这便是RGB颜色空间
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三个通道分量合成的颜色

在这里插入图片描述

实例——信号灯的识别

有如下情境:
在这里插入图片描述
机器人应该如何识别信号灯呢?

首先需要分析在 RGB 颜色空间下红色、绿色、黄色在数值上具有什么特征。

最简单的是红色和绿色,因为它们就对应着 R 通道和 G 通道。因此,当 R 通道的值很大时且剩余通道的值很小时,机器人就可以认为现在是红灯。 对于绿灯也是同理。

那么黄灯怎么办呢?通过颜色合成知识可以知道,黄色实际上是由红色和绿色合成的。(可以仔细观察一下老式红绿灯。老式红绿灯上只有红色和绿色灯珠,亮黄灯时是红灯和绿灯同时亮的。或者也可以拿红色颜料和绿色颜料搅拌混合一下,也可以发现颜料变成了黄色。)因此,当 R 通道和 G 通道的值都很大时,且 B 通道的值很小时,机器人可以认为现在是黄灯。

以下为机器人的“心路历程”:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

总结

总的来说,计算机视觉研究的本质还是概率与统计,利用不同的统计方式来识别不同的物体。上面演示的是最简单的一种形式,事实上,如今研究的深度学习、神经网络等“高科技”技术,其背后的原理依然是统计。因此我们说计算机视觉的本质是统计。(图片的存储格式不是计算机视觉研究的重点,甚至可以说计算机视觉压根就不关心图片的存储格式。这个是通信相关领域需要研究的,在这里就不展开说了。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值