论文阅读——Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE

  • 原文链接:Generating Diverse Structure for Image Inpainting With Hierarchical VQ-VAE (CVPR 2021). Jialun Peng, Dong Liu, Songcen Xu, Houqiang Li [Paper] [Code]

本文创新点:

  1. 提出了学习结构特征分布的条件自回归网络,能够产生多样性的合理结构;
  2. 提出了两个特征损失,并用预训练的分层VQ-VAE进行计算。

网络结构

网络分为两个阶段,第一阶段为粗修复阶段,利用条件自回归网络生成多样性的结构特征,第二阶段为细修复阶段,利用结构对纹理进行修复。分层VQ-VAE只在训练过程中使用。

 分层VQ-VAE

分层VQ-VAE在VQ-VAE的基础上将全局信息和局部信息分开建模,top level关注图像的全局特征(结构),bottom level关注图像的局部特征(纹理)。预训练的分层VQ-VAE用来计算两个特征损失。

结构生成

结构生成器Gs 使用自回归网络来在离散结构特征上形成条件分布。然后从分布中抽样可以产生不同的结构特征。

自回归网络

P(x) 为输入数据的概率分布,一张 N = 256 * 256 像素的图像的第一个像素用x0 ,表示,第n个像素用xn-1 表示,则P(x) 就可以表示为,

一旦知道了整张照片的概率分布,就可以从这个分布抽样无数的新图像。具体抽样的过程是先从P(x0) 抽样x0 , 然后根据条件概率依次抽取剩余像素数值,这个过程被称作自回归。

在训练过程中,Gs 利用输入的不完整图像作为条件,并对 上的条件分布进行建模。该分布可以写成Gs 的训练损失为,

纹理生成

在训练过程中,纹理生成器的输入结构特征是真实图像的,在测试过程是结构生成器生成的。

注意力机制

首先,计算输入特征与纹理特征之间的欧式距离相似度分数,

放大之后经过softmax得到完整的注意力分数,

最后,利用注意力分数对特征进行重建,

损失函数

总的损失包括重构损失、对抗性损失和两个特征损失。

重构损失

对抗损失

特征损失

Gt的结构特征损失定义为  和 之间的多类交叉熵:

其中, 代表 中第i个特征向量与结构码本中第j个向量之间的距离相似性得分。 为标签,当 的的第i个特征向量属于结构码本的第 j 类时, 为1,否则为0。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值