【矩阵论】7.范数理论——范数估计——许尔估计&谱估计

矩阵论的所有文章,主要内容参考北航赵迪老师的课件

[注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。

矩阵论
1. 准备知识——复数域上矩阵,Hermite变换
1.准备知识——复数域上的内积域正交阵
1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩
2. 矩阵分解——SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——正定阵分解
2. 矩阵分解——单阵谱分解
2. 矩阵分解——正规分解——正规阵
2. 矩阵分解——正规谱分解
2. 矩阵分解——高低分解
3. 矩阵函数——常见解析函数
3. 矩阵函数——谱公式,幂0与泰勒计算矩阵函数
3. 矩阵函数——矩阵函数求导
4. 矩阵运算——观察法求矩阵特征值特征向量
4. 矩阵运算——张量积
4. 矩阵运算——矩阵拉直
4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆
4. 矩阵运算——广义逆——加号逆的计算
4. 矩阵运算——广义逆——加号逆应用
4. 矩阵运算——广义逆——减号逆
5. 线性空间与线性变换——线性空间
5. 线性空间与线性变换——生成子空间
5. 线性空间与线性变换——线性映射与自然基分解,线性变换
6. 正规方程与矩阵方程求解
7. 范数理论——基本概念——向量范数与矩阵范数
7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式
7. 矩阵理论——算子范数
7.范数理论——范数估计——许尔估计&谱估计
7. 范数理论——非负/正矩阵
8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵
8. 常用矩阵总结——镜面阵,正定阵
8. 常用矩阵总结——单阵,正规阵,幂0阵,幂等阵,循环阵


在这里插入图片描述

7.3 许尔估计

任意方阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n ,全体根 λ ( A ) = { λ 1 , ⋯   , λ n } \lambda(A)=\{\lambda_1,\cdots,\lambda_n\} λ(A)={λ1,,λn} ,满足 ∣ λ 1 ∣ 2 + ⋯ + ∣ λ n ∣ 2 ≤ ∑ ∣ a i j ∣ 2 \vert \lambda_1\vert^2+\cdots+\vert \lambda_n\vert^2\le \sum \vert a_{ij}\vert^2 λ12++λn2aij2

  • ∣ λ 1 ∣ 2 + ⋯ + ∣ λ n ∣ 2 = ∑ ∣ a i j ∣ 2 \vert \lambda_1\vert^2+\cdots+\vert \lambda_n\vert^2= \sum \vert a_{ij}\vert^2 λ12++λn2=aij2 ,则A为正规阵

证明
用许尔公式,存在 U 阵 Q ,使 Q H A Q = D = ( λ 1 ⋯ ∗ ⋮ ⋱ ⋮ 0 ⋯ λ n ) 为上三角 ⇒ Q H A H Q = D H , ∴ Q H A H A Q = Q H A H Q Q H A Q = D H D 由于 Q 是 U 阵,则 Q − 1 = Q H , 则 Q − 1 A H A Q = D H D , 即 A H A 相似于 D H D 故 t r ( A H A ) = t r ( D H D ) 而 t r ( A H A ) = ∑ i = 0 , j = 0 n ∣ a i j ∣ 2 , D H D = ( λ 1 ‾ ⋯ 0 ⋮ ⋱ ⋮ ∗ ‾ ⋯ λ n ‾ ) ( λ 1 ⋯ ∗ ⋮ ⋱ ⋮ 0 ⋯ λ n ) 故 t r ( D H D ) = λ 1 ‾ λ 1 + ⋯ + λ n ‾ λ n + ∗ ‾ ∗ = ∑ k = 0 n ∣ λ k ∣ 2 + ∑ ∣ ∗ ∣ 2 ⇒ ∑ i = 0 , j = 0 n ∣ a i j ∣ 2 = ∑ k = 0 n ∣ λ k ∣ 2 + ∑ ∣ ∗ ∣ 2 ≥ ∑ k = 0 n ∣ λ k ∣ 2 − − − − 当 = 成立时,有 ∑ ∣ ∗ ∣ 2 = 0 ,故 Q H A Q = D = ( λ 1 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ λ n ) 为对角阵(正规阵), 则 A 为正规阵 \begin{aligned} &用许尔公式,存在U阵Q,使Q^HAQ=D=\left( \begin{matrix} \lambda_1&\cdots&*\\ \vdots&\ddots&\vdots\\ 0&\cdots&\lambda_n \end{matrix} \right) 为上三角\\ &\Rightarrow Q^HA^HQ=D^H,\quad \therefore Q^HA^HAQ=Q^HA^HQQ^HAQ=D^HD\\ &由于Q是U阵,则Q^{-1}=Q^H,则Q^{-1}A^HAQ=D^HD,即A^HA相似于D^HD\\ &故tr(A^HA)=tr(D^HD)\\ &而tr(A^HA)=\sum_{i=0,j=0}^n\vert a_{ij}\vert^2,D^HD=\left( \begin{matrix} \overline{\lambda_1}&\cdots&0\\ \vdots&\ddots&\vdots\\ \overline{*}&\cdots&\overline{\lambda_n} \end{matrix} \right)\left( \begin{matrix} \lambda_1&\cdots&*\\ \vdots&\ddots&\vdots\\ 0&\cdots&\lambda_n \end{matrix} \right)\\ &故tr(D^HD)=\overline{\lambda_1}\lambda_1+\cdots+\overline{\lambda_n}\lambda_n+\overline{*}*=\sum_{k=0}^n\vert \lambda_k\vert^2+\sum\vert *\vert^2\\ &\Rightarrow \sum_{i=0,j=0}^n\vert a_{ij}\vert^2=\sum_{k=0}^n\vert \lambda_k\vert^2+\sum\vert *\vert^2\ge \sum_{k=0}^n\vert \lambda_k\vert^2\\ &----\\ &当 = 成立时,有 \sum \vert *\vert^2=0 ,故 Q^HAQ=D=\left( \begin{matrix} \lambda_1&\cdots&0\\ \vdots&\ddots&\vdots\\ 0&\cdots&\lambda_n \end{matrix}\right)为对角阵(正规阵),\\ &则A为正规阵 \end{aligned} 用许尔公式,存在UQ,使QHAQ=D= λ10λn 为上三角QHAHQ=DH,QHAHAQ=QHAHQQHAQ=DHD由于QU阵,则Q1=QH,Q1AHAQ=DHD,AHA相似于DHDtr(AHA)=tr(DHD)tr(AHA)=i=0,j=0naij2,DHD= λ10λn λ10λn tr(DHD)=λ1λ1++λnλn+=k=0nλk2+2i=0,j=0naij2=k=0nλk2+2k=0nλk2=成立时,有2=0,故QHAQ=D= λ100λn 为对角阵(正规阵),A为正规阵

eg

在这里插入图片描述

∣ λ I − A ∣ = λ 3 − a 1 a 2 a 3 = 0 ⇒ λ = a 1 a 2 a 3 3 , ∑ ∣ λ ∣ 2 = 3 ( a 1 a 2 a 3 ) 2 3 ∑ ∣ a i j ∣ = a 1 2 + a 2 2 + a 3 2 , 由许尔估计, ∑ ∣ a i j ∣ ≥ ∑ ∣ λ ∣ 2 当且仅当 a 1 = a 2 = a 3 时,有 ∑ ∣ a i j ∣ = ∑ ∣ λ ∣ 2 , 即 A 为正规阵 \begin{aligned} &\vert \lambda I-A\vert=\lambda^3-a_1a_2a_3=0\Rightarrow \lambda=\sqrt[3]{a_1a_2a_3},\sum\vert \lambda\vert^2=3(a_1a_2a_3)^{\frac{2}{3}}\\ &\sum\vert a_{ij}\vert=a_1^2+a_2^2+a_3^2,由许尔估计, \sum\vert a_{ij}\vert\ge \sum\vert \lambda\vert^2\\ &当且仅当 a_1=a_2=a_3时,有 \sum\vert a_{ij}\vert= \sum\vert \lambda\vert^2,即A为正规阵 \end{aligned} λIA=λ3a1a2a3=0λ=3a1a2a3 ,λ2=3(a1a2a3)32aij=a12+a22+a32,由许尔估计,aijλ2当且仅当a1=a2=a3时,有aij=λ2,A为正规阵


在这里插入图片描述

∣ λ I − A ∣ = λ n − ( − 1 ) n ∏ i = 1 n a i = 0 , λ i = − ∏ i = 1 n a i n , ∴ 有许尔估计 ∑ i = 1 n ∣ λ i ∣ 2 = n ( ∏ i = 1 n a i ) 2 n ≤ ∑ i = 1 n a i 2 当且仅当 a 1 = ⋯ = a n 时,满足 A H A = A A H , A 为正规阵 \begin{aligned} &\vert \lambda I-A\vert=\lambda^n-(-1)^{n}\prod_{i=1}^na_i=0,\lambda_i=-\sqrt[n]{\prod_{i=1}^na_i},\\ &\therefore 有许尔估计\sum_{i=1}^n\vert \lambda_i\vert^2=n(\prod_{i=1}^na_i)^{\frac{2}{n}}\le \sum_{i=1}^na_i^2\\ &当且仅当a_1=\cdots=a_n时,满足A^HA=AA^H,A为正规阵 \end{aligned} λIA=λn(1)ni=1nai=0,λi=ni=1nai 有许尔估计i=1nλi2=n(i=1nai)n2i=1nai2当且仅当a1==an时,满足AHA=AAH,A为正规阵

7.4 谱(特征值)估计

7.4.1 盖尔圆定理1:A的全体特征根被 n个Ger圆盖住

a. Ger圆盘

n 阶方阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n 的第i个Ger半径为 R i = ∑ i = 1 , j ≠ i n ∣ a i j ∣ = ∣ a i 1 ∣ + ⋯ + ∣ a i i − 1 ∣ + ∣ a i i + 1 ∣ + ⋯ + ∣ a i n ∣ R_i=\sum_{i=1,j\neq i}^{n}\limits \vert a_{ij}\vert = \vert a_{i1}\vert+\cdots+\vert a_{ii-1}\vert+\vert a_{ii+1}\vert+\cdots+\vert a_{in}\vert Ri=i=1,j=inaij=ai1++aii1+aii+1++ain ,规定第i个Ger圆为 G i = { Z ∣ ∣ Z − a i i ∣ ≤ R i } , Z ∈ C , i = 1 , 2 , ⋯   , n G_i=\{Z\mid \vert Z-a_{ii}\vert\le R_i\},Z\in C,i=1,2,\cdots,n Gi={ZZaiiRi},ZC,i=1,2,,n

b. 圆盘定理

方阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n 的全体特征根都在A的n个Ger圆盘并集内,即 λ ( A ) = { λ 1 , ⋯   , λ n } ⊂ G 1 ∪ G 2 ∪ ⋯ ∪ G n = ⋃ i = 1 n G i = Δ G ( A ) \lambda(A)=\{\lambda_1,\cdots,\lambda_n\}\subset G_1\cup G_2\cup\cdots\cup G_n=\bigcup_{i=1}^{n}\limits G_i \overset{\Delta}{=}G(A) λ(A)={λ1,,λn}G1G2Gn=i=1nGi=ΔG(A)

即 Ger 圆盘并集 G ( A ) G(A) G(A) 覆盖了全体特征根 λ ( A ) ⊂ G ( A ) \lambda(A)\subset G(A) λ(A)G(A) ,A的全体特征根被 n个Ger圆盖住

在这里插入图片描述

eg

在这里插入图片描述

Ger圆为 G 1 : ∣ Z − a 11 ∣ = ∣ Z − 1 ∣ ≤ R 1 = 0.2 + 0.5 + 0.3 = 1 G 2 : ∣ Z − a 22 ∣ = ∣ Z − ( − 2 ) ∣ ≤ R 2 = 0.6 + 1 + 0.2 = 1.8 G 3 : ∣ Z − a 33 ∣ = ∣ Z − ( 3 ) ∣ ≤ R 3 = 0.3 + 0.4 + 0.7 = 1.4 G 4 : ∣ Z − a 44 ∣ = ∣ Z − ( − 5 ) ∣ ≤ R 4 = 0.2 + 0.3 + 0.3 = 0.8 \begin{aligned}&G_1:\vert Z-a_{11}\vert=\vert Z-1\vert\le R_1=0.2+0.5+0.3=1\\ &G_2:\vert Z-a_{22}\vert = \vert Z-(-2)\vert\le R_2=0.6+1+0.2=1.8\\ &G_3:\vert Z-a_{33}\vert = \vert Z-(3)\vert\le R_3=0.3+0.4+0.7=1.4\\ &G_4:\vert Z-a_{44}\vert = \vert Z-(-5)\vert\le R_4=0.2+0.3+0.3=0.8\\\end{aligned} G1:Za11=Z1∣R1=0.2+0.5+0.3=1G2:Za22=Z(2)R2=0.6+1+0.2=1.8G3:Za33=Z(3)R3=0.3+0.4+0.7=1.4G4:Za44=Z(5)R4=0.2+0.3+0.3=0.8

在这里插入图片描述

λ ( A ) ⊂ G 1 ∪ G 2 ∪ G 3 ∪ G 4 \lambda(A)\subset G_1\cup G_2 \cup G_3 \cup G_4 λ(A)G1G2G3G4

7.4.2 圆盘定理2:连通分支

若A的k个 Ger 圆相连(相切),且与其他 n − k n-k nk 个圆分离,称此 k k k 个圆的并集为一个连通分支,简称分支

  • 一个孤立圆盘是一个分支

设D是A的k个 Ger圆构成的分支,则D中恰有k个特征值(含重复)

如上述 G 1 G_1 G1 G 3 G_3 G3 为一个连通分支 , G 2 G_2 G2 G 4 G_4 G4 分别为一个分支,且A至少有2个实特征根

在这里插入图片描述

  • 独立圆盘必定包含一个实根,虚根必然成对出现在同一连通分支

eg
在这里插入图片描述

G 1 : ∣ Z − a 11 ∣ = ∣ Z − 9 ∣ ≤ R 1 = 1 + 2 + 1 = 4 G 2 : ∣ Z − a 22 ∣ = ∣ Z − 8 ∣ ≤ R 2 = 1 + 1 = 2 G 3 : ∣ Z − a 33 ∣ = ∣ Z − 4 ∣ ≤ R 3 = 1 G 4 : ∣ Z − a 44 ∣ = ∣ Z − 1 ∣ ≤ R 4 = 1 \begin{aligned} &G_1:\vert Z-a_{11}\vert=\vert Z-9\vert\le R_1=1+2+1=4\\ &G_2:\vert Z-a_{22}\vert=\vert Z-8\vert\le R_2=1+1=2\\ &G_3:\vert Z-a_{33}\vert=\vert Z-4\vert\le R_3=1\\ &G_4:\vert Z-a_{44}\vert=\vert Z-1\vert\le R_4=1\\ \end{aligned} G1:Za11=Z9∣R1=1+2+1=4G2:Za22=Z8∣R2=1+1=2G3:Za33=Z4∣R3=1G4:Za44=Z1∣R4=1
在这里插入图片描述

G 4 G_4 G4 为一个分支 D 1 D_1 D1 G 3 、 G 2 、 G 1 G_3、G_2、G_1 G3G2G1 为一个分支 D 2 D_2 D2。 由于虚根是成对出现的,且 D 1 D_1 D1 中只有一个特根, D 2 D_2 D2 中有3个特根,故 D 1 D_1 D1 中的特根一定是实根, D 2 D_2 D2 至少有一个实根
在这里插入图片描述

G 1 : ∣ Z − a 11 ∣ = ∣ Z − 20 ∣ ≤ R 1 = 5.3 G 2 : ∣ Z − a 22 ∣ = ∣ Z − 10 ∣ ≤ R 2 = 4.5 G 3 : ∣ Z − a 33 ∣ = ∣ Z − 10 i ∣ ≤ R 3 = 6 \begin{aligned} &G_1:\vert Z-a_{11}\vert=\vert Z-20\vert\le R_1=5.3\\ &G_2:\vert Z-a_{22}\vert=\vert Z-10\vert\le R_2=4.5\\ &G_3:\vert Z-a_{33}\vert=\vert Z-10i\vert\le R_3=6 \end{aligned} G1:Za11=Z20∣R1=5.3G2:Za22=Z10∣R2=4.5G3:Za33=Z10iR3=6
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

7.4.3 许尔圆盘推论

a. 原点不在圆盘内,则A可逆

对方阵 A,若原点 0 ∉ G ( A ) 0\notin G(A) 0/G(A) ,即 0 0 0 在n个Ger圆之外,则A为可逆阵

反证: 若 0 ∉ G ( A ) , 且 A 不可逆,则 ∣ A ∣ = ∏ i = 0 n λ i = 0 , 即 0 ∈ λ ( A ) , 故 0 ∈ ⋃ i = 0 n G i ,矛盾 故方阵 A ,若原点 0 ∉ G ( A ) ,则 A 可逆 \begin{aligned} &反证:\\ &若0\notin G(A),且A不可逆,则 \vert A\vert =\prod_{i=0}^{n}\lambda_i=0,即0\in \lambda(A),故0\in \bigcup_{i=0}^nG_i ,矛盾\\ &故方阵A,若原点 0 \notin G(A),则A可逆 \end{aligned} 反证:0/G(A),A不可逆,则A=i=0nλi=0,0λ(A),0i=0nGi,矛盾故方阵A,若原点0/G(A),则A可逆

b. 对角占优阵一定可逆

A = ( a i j ) n , n A=(a_{ij})_{n,n} A=(aij)n,n 为行对角占优阵,则A可逆

A = ( a i j ) n , n A=(a_{ij})_{n,n} A=(aij)n,n 为列对角占优阵,则A可逆

在这里插入图片描述

c. k个分离Ger圆,则有k个不同根

A ∈ C n × n A\in C^{n\times n} ACn×n 的n个Ger圆中有k个独立的Ger圆,则A至少有k个互异特征根

  • 若A的n个Ger圆互相分离(都是孤立圆),则A是单阵(可对角化)

若实对称阵 A ∈ C n × n A\in C^{n\times n} ACn×n 的n个Ger圆中有k个独立的Ger圆,则A至少有k个互异实特征根
A 的 n 个 G e r 圆圆心都在实轴上,故每个孤立 G e r 圆中只能有一个特征值 实对称阵 A 若有复根,必共轭出现,故 G e r 圆中的特征值必为实特征值 A的n个Ger圆圆心都在实轴上,故每个孤立Ger圆中只能有一个特征值\\ 实对称阵A若有复根,必共轭出现,故Ger圆中的特征值必为实特征值 AnGer圆圆心都在实轴上,故每个孤立Ger圆中只能有一个特征值实对称阵A若有复根,必共轭出现,故Ger圆中的特征值必为实特征值
eg

在这里插入图片描述

R 1 = R 2 = R 3 = 3 4 , , 3 个 G e r 圆为 ∣ Z − 3 ∣ ≤ 3 4 , ∣ Z − 1 ∣ ≤ 3 4 , ∣ Z − 5 ∣ ≤ 3 4 \begin{aligned} &R_1=R_2=R_3=\frac{3}{4},,3个Ger圆为 \vert Z-3\vert\le \frac{3}{4},\vert Z-1\vert\le \frac{3}{4},\vert Z-5\vert\le \frac{3}{4}\\ \end{aligned} R1=R2=R3=43,3Ger圆为Z3∣43,Z1∣43,Z5∣43

在这里插入图片描述

可见3个Ger圆中心在x轴上,都是独立的圆,故A有3个不同特根,A为单阵

λ ≥ 1 − 3 4 , λ 2 ≥ 3 − 3 4 , λ 3 ≥ 5 − 3 4 , ⇒ ∣ A ∣ ≥ 1 4 ⋅ 9 4 ⋅ 17 4 = 9 × 17 64 \lambda\ge 1-\frac{3}{4},\lambda_2\ge 3-\frac{3}{4},\lambda_3\ge 5-\frac{3}{4},\Rightarrow \vert A\vert\ge \frac{1}{4}\cdot\frac{9}{4}\cdot\frac{17}{4}=\frac{9\times 17}{64} λ143,λ2343,λ3543,A4149417=649×17

d. A A A A T A^T AT 的Ger圆

由于A与 A T A^T AT 有相同特征值, λ ( A ) = λ ( A T ) \lambda(A)=\lambda(A^T) λ(A)=λ(AT),可用 A的Ger半径代替 A T 的 G e r 半径 A^T的Ger半径 ATGer半径

A的列圆盘定理:A的列圆盘为 G p ′ = { Z ∣ ∣ Z − a p p ∣ ≤ R p ~ } , p = 1 , 2 , ⋯   , n G_p'=\{Z|\vert Z-a_{pp}\vert\le \widetilde{R_p}\},p=1,2,\cdots,n Gp={Z∣∣ZappRp },p=1,2,,n ,其中 R p ~ = ∣ a 1 p ∣ + ⋯ + ∣ a p − 1 p ∣ + ∣ a p + 1 p ∣ + ⋯ + ∣ a n p ∣ \widetilde{R_p}=\vert a_{1p}\vert+\cdots+\vert a_{p-1p}\vert+\vert a_{p+1p}\vert+\cdots+\vert a_{np}\vert Rp =a1p++ap1p+ap+1p++anp 为列半径

对于 A T A^T AT 的Ger圆 G 1 ′ , G 2 ′ , ⋯   , G n ′ G_1',G_2',\cdots,G_n' G1,G2,,Gn A A A 的Ger圆 G 1 , G 2 , ⋯   , G n G_1,G_2,\cdots,G_n G1,G2,,Gn 有相同的圆心,故特征值 λ i ∈ ( ⋃ i = 1 n G i ) ⋂ ( ⋃ i = 1 n G i ′ ) , 1 ≤ i ≤ n \lambda_i\in (\bigcup_{i=1}^{n}\limits G_i)\bigcap(\bigcup_{i=1}^{n}\limits G_i'),1\le i\le n λi(i=1nGi)(i=1nGi),1in

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
### 回答1: 最小范数谱估计是一种在MATLAB中使用的估计频谱的方法。该方法的目标是通过最小化某个范数估计信号的频谱。 在MATLAB中,可以使用fmincon函数来实现最小范数谱估计。首先,我们需要定义一个函数,该函数计算模型的频谱估计值,并返回它与观测信号之间的误差。这个函数将作为目标函数传递给fmincon函数。 然后,我们需要定义一个约束函数,该函数将确保频谱估计值满足一些预定义的条件,如非负性约束。 接下来,我们需要定义优化问题的约束条件,并设置一些初始值,如频谱估计值的初始猜测。 最后,我们使用fmincon函数来求解优化问题,并得到最小范数估计的频谱结果。 需要注意的是,最小范数谱估计在实际应用中可能会受到一些限制,如观测噪声的影响和估计误差的增加。因此,在使用该方法时,需要谨慎选择约束条件和初始猜测值,以获得准确的频谱估计结果。 总之,最小范数谱估计是一种在MATLAB中实现的估计频谱的方法,通过最小化某个范数来求解优化问题,并得到频谱估计结果。 ### 回答2: 最小范数谱估计是一种通过将谱估计问题转化为一个最小范数优化问题来估计信号的频谱。在Matlab中,我们可以使用一些工具箱和函数来实现最小范数谱估计。 首先,我们可以使用`pwelch`函数来计算信号的功率谱密度。该函数使用Welch方法将信号分段,并通过对每个段的傅里叶变换估计每个频率点的功率。 然后,我们可以使用`min-norm`函数来估计信号的频谱。此函数将谱估计问题转化为一个最小范数优化问题,通过最小化估计谱和实际谱之间的范数来得到频谱估计值。我们可以通过设置一些参数,如阈值、约束条件等,来调整优化问题的求解过程。 接下来,我们可以使用`plot`函数将估计的频谱绘制出来,以便观察和分析信号的频谱特征。我们还可以使用`bar`函数在频谱图上绘制柱状图,以更清晰地显示不同频率点的功率。 最后,我们可以使用其他相关的Matlab函数和工具箱来进一步分析和处理估计的频谱。例如,我们可以使用`findpeaks`函数来查找峰值点,或使用`filter`函数来对频谱进行滤波处理。这些工具和函数可以帮助我们更好地理解和利用最小范数谱估计的结果。 总之,通过使用Matlab中提供的一些函数和工具箱,我们可以较容易地进行最小范数谱估计,从而得到信号的频谱估计值,并进一步分析和处理这些结果。这种方法在信号处理和频谱分析中具有广泛的应用。 ### 回答3: 最小范数法是一种在频域中估计一个系统的频谱的方法。它可以通过最小化观测误差的范数来获得频谱估计。在MATLAB中,最小范数法可以用于估计一个信号的频谱。 使用最小范数法进行谱估计的一般步骤如下: 1. 收集要进行频谱估计的信号数据。 2. 使用MATLAB读取信号数据,并进行必要的预处理,例如去除噪声或窗函数。 3. 将信号数据转换到频域,可以使用FFT(快速傅里叶变换)或其它频谱分析方法。 4. 构造一个最小范数问题,该问题的目标是最小化观测数据与估计出的频谱之间的范数。可以使用MATLAB中的线性代数库(例如“linalg”)来设置和解决最小范数问题。 5. 根据所得到的最小范数问题的结果,可以得到对信号频谱的估计。可以使用MATLAB绘图函数来可视化这个估计结果。 6. 根据需要,可以对估计的频谱进行后处理,例如去除噪声、平滑或解释。 总结起来,最小范数法是MATLAB中一种用于频谱估计的方法,它通过最小化观测数据与估计频谱之间的范数来得到频谱估计。通过使用适当的线性代数库,可以在MATLAB中实现这一方法,并可根据需要进行后处理和可视化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmosTian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值