【矩阵论】7.范数理论——范数估计——许尔估计&谱估计

矩阵论的所有文章,主要内容参考北航赵迪老师的课件

[注]由于矩阵论对计算机比较重要,所以选修了这门课,但不是专业搞数学的,所以存在很多口语化描述,而且对很多东西理解不是很正确与透彻,欢迎大家指正。我可能间歇性忙,但有空一定会回复修改的。

矩阵论
1. 准备知识——复数域上矩阵,Hermite变换
1.准备知识——复数域上的内积域正交阵
1.准备知识——Hermite阵,二次型,矩阵合同,正定阵,幂0阵,幂等阵,矩阵的秩
2. 矩阵分解——SVD准备知识——奇异值
2. 矩阵分解——SVD
2. 矩阵分解——QR分解
2. 矩阵分解——正定阵分解
2. 矩阵分解——单阵谱分解
2. 矩阵分解——正规分解——正规阵
2. 矩阵分解——正规谱分解
2. 矩阵分解——高低分解
3. 矩阵函数——常见解析函数
3. 矩阵函数——谱公式,幂0与泰勒计算矩阵函数
3. 矩阵函数——矩阵函数求导
4. 矩阵运算——观察法求矩阵特征值特征向量
4. 矩阵运算——张量积
4. 矩阵运算——矩阵拉直
4.矩阵运算——广义逆——加号逆定义性质与特殊矩阵的加号逆
4. 矩阵运算——广义逆——加号逆的计算
4. 矩阵运算——广义逆——加号逆应用
4. 矩阵运算——广义逆——减号逆
5. 线性空间与线性变换——线性空间
5. 线性空间与线性变换——生成子空间
5. 线性空间与线性变换——线性映射与自然基分解,线性变换
6. 正规方程与矩阵方程求解
7. 范数理论——基本概念——向量范数与矩阵范数
7.范数理论——基本概念——矩阵范数生成向量范数&谱范不等式
7. 矩阵理论——算子范数
7.范数理论——范数估计——许尔估计&谱估计
7. 范数理论——非负/正矩阵
8. 常用矩阵总结——秩1矩阵,优阵(单位正交阵),Hermite阵
8. 常用矩阵总结——镜面阵,正定阵
8. 常用矩阵总结——单阵,正规阵,幂0阵,幂等阵,循环阵


在这里插入图片描述

7.3 许尔估计

任意方阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n ,全体根 λ ( A ) = { λ 1 , ⋯   , λ n } \lambda(A)=\{\lambda_1,\cdots,\lambda_n\} λ(A)={λ1,,λn} ,满足 ∣ λ 1 ∣ 2 + ⋯ + ∣ λ n ∣ 2 ≤ ∑ ∣ a i j ∣ 2 \vert \lambda_1\vert^2+\cdots+\vert \lambda_n\vert^2\le \sum \vert a_{ij}\vert^2 λ12++λn2aij2

  • ∣ λ 1 ∣ 2 + ⋯ + ∣ λ n ∣ 2 = ∑ ∣ a i j ∣ 2 \vert \lambda_1\vert^2+\cdots+\vert \lambda_n\vert^2= \sum \vert a_{ij}\vert^2 λ12++λn2=aij2 ,则A为正规阵

证明
用许尔公式,存在 U 阵 Q ,使 Q H A Q = D = ( λ 1 ⋯ ∗ ⋮ ⋱ ⋮ 0 ⋯ λ n ) 为上三角 ⇒ Q H A H Q = D H , ∴ Q H A H A Q = Q H A H Q Q H A Q = D H D 由于 Q 是 U 阵,则 Q − 1 = Q H , 则 Q − 1 A H A Q = D H D , 即 A H A 相似于 D H D 故 t r ( A H A ) = t r ( D H D ) 而 t r ( A H A ) = ∑ i = 0 , j = 0 n ∣ a i j ∣ 2 , D H D = ( λ 1 ‾ ⋯ 0 ⋮ ⋱ ⋮ ∗ ‾ ⋯ λ n ‾ ) ( λ 1 ⋯ ∗ ⋮ ⋱ ⋮ 0 ⋯ λ n ) 故 t r ( D H D ) = λ 1 ‾ λ 1 + ⋯ + λ n ‾ λ n + ∗ ‾ ∗ = ∑ k = 0 n ∣ λ k ∣ 2 + ∑ ∣ ∗ ∣ 2 ⇒ ∑ i = 0 , j = 0 n ∣ a i j ∣ 2 = ∑ k = 0 n ∣ λ k ∣ 2 + ∑ ∣ ∗ ∣ 2 ≥ ∑ k = 0 n ∣ λ k ∣ 2 − − − − 当 = 成立时,有 ∑ ∣ ∗ ∣ 2 = 0 ,故 Q H A Q = D = ( λ 1 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ λ n ) 为对角阵(正规阵), 则 A 为正规阵 \begin{aligned} &用许尔公式,存在U阵Q,使Q^HAQ=D=\left( \begin{matrix} \lambda_1&\cdots&*\\ \vdots&\ddots&\vdots\\ 0&\cdots&\lambda_n \end{matrix} \right) 为上三角\\ &\Rightarrow Q^HA^HQ=D^H,\quad \therefore Q^HA^HAQ=Q^HA^HQQ^HAQ=D^HD\\ &由于Q是U阵,则Q^{-1}=Q^H,则Q^{-1}A^HAQ=D^HD,即A^HA相似于D^HD\\ &故tr(A^HA)=tr(D^HD)\\ &而tr(A^HA)=\sum_{i=0,j=0}^n\vert a_{ij}\vert^2,D^HD=\left( \begin{matrix} \overline{\lambda_1}&\cdots&0\\ \vdots&\ddots&\vdots\\ \overline{*}&\cdots&\overline{\lambda_n} \end{matrix} \right)\left( \begin{matrix} \lambda_1&\cdots&*\\ \vdots&\ddots&\vdots\\ 0&\cdots&\lambda_n \end{matrix} \right)\\ &故tr(D^HD)=\overline{\lambda_1}\lambda_1+\cdots+\overline{\lambda_n}\lambda_n+\overline{*}*=\sum_{k=0}^n\vert \lambda_k\vert^2+\sum\vert *\vert^2\\ &\Rightarrow \sum_{i=0,j=0}^n\vert a_{ij}\vert^2=\sum_{k=0}^n\vert \lambda_k\vert^2+\sum\vert *\vert^2\ge \sum_{k=0}^n\vert \lambda_k\vert^2\\ &----\\ &当 = 成立时,有 \sum \vert *\vert^2=0 ,故 Q^HAQ=D=\left( \begin{matrix} \lambda_1&\cdots&0\\ \vdots&\ddots&\vdots\\ 0&\cdots&\lambda_n \end{matrix}\right)为对角阵(正规阵),\\ &则A为正规阵 \end{aligned} 用许尔公式,存在UQ,使QHAQ=D= λ10λn 为上三角QHAHQ=DH,QHAHAQ=QHAHQQHAQ=DHD由于QU阵,则Q1=QH,Q1AHAQ=DHD,AHA相似于DHDtr(AHA)=tr(DHD)tr(AHA)=i=0,j=0naij2,DHD= λ10λn λ10λn tr(DHD)=λ1λ1++λnλn+=k=0nλk2+2i=0,j=0naij2=k=0nλk2+2k=0nλk2=成立时,有2=0,故QHAQ=D= λ100λn 为对角阵(正规阵),A为正规阵

eg

在这里插入图片描述

∣ λ I − A ∣ = λ 3 − a 1 a 2 a 3 = 0 ⇒ λ = a 1 a 2 a 3 3 , ∑ ∣ λ ∣ 2 = 3 ( a 1 a 2 a 3 ) 2 3 ∑ ∣ a i j ∣ = a 1 2 + a 2 2 + a 3 2 , 由许尔估计, ∑ ∣ a i j ∣ ≥ ∑ ∣ λ ∣ 2 当且仅当 a 1 = a 2 = a 3 时,有 ∑ ∣ a i j ∣ = ∑ ∣ λ ∣ 2 , 即 A 为正规阵 \begin{aligned} &\vert \lambda I-A\vert=\lambda^3-a_1a_2a_3=0\Rightarrow \lambda=\sqrt[3]{a_1a_2a_3},\sum\vert \lambda\vert^2=3(a_1a_2a_3)^{\frac{2}{3}}\\ &\sum\vert a_{ij}\vert=a_1^2+a_2^2+a_3^2,由许尔估计, \sum\vert a_{ij}\vert\ge \sum\vert \lambda\vert^2\\ &当且仅当 a_1=a_2=a_3时,有 \sum\vert a_{ij}\vert= \sum\vert \lambda\vert^2,即A为正规阵 \end{aligned} λIA=λ3a1a2a3=0λ=3a1a2a3 ,λ2=3(a1a2a3)32aij=a12+a22+a32,由许尔估计,aijλ2当且仅当a1=a2=a3时,有aij=λ2,A为正规阵


在这里插入图片描述

∣ λ I − A ∣ = λ n − ( − 1 ) n ∏ i = 1 n a i = 0 , λ i = − ∏ i = 1 n a i n , ∴ 有许尔估计 ∑ i = 1 n ∣ λ i ∣ 2 = n ( ∏ i = 1 n a i ) 2 n ≤ ∑ i = 1 n a i 2 当且仅当 a 1 = ⋯ = a n 时,满足 A H A = A A H , A 为正规阵 \begin{aligned} &\vert \lambda I-A\vert=\lambda^n-(-1)^{n}\prod_{i=1}^na_i=0,\lambda_i=-\sqrt[n]{\prod_{i=1}^na_i},\\ &\therefore 有许尔估计\sum_{i=1}^n\vert \lambda_i\vert^2=n(\prod_{i=1}^na_i)^{\frac{2}{n}}\le \sum_{i=1}^na_i^2\\ &当且仅当a_1=\cdots=a_n时,满足A^HA=AA^H,A为正规阵 \end{aligned} λIA=λn(1)ni=1nai=0,λi=ni=1nai 有许尔估计i=1nλi2=n(i=1nai)n2i=1nai2当且仅当a1==an时,满足AHA=AAH,A为正规阵

7.4 谱(特征值)估计

7.4.1 盖尔圆定理1:A的全体特征根被 n个Ger圆盖住

a. Ger圆盘

n 阶方阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n 的第i个Ger半径为 R i = ∑ i = 1 , j ≠ i n ∣ a i j ∣ = ∣ a i 1 ∣ + ⋯ + ∣ a i i − 1 ∣ + ∣ a i i + 1 ∣ + ⋯ + ∣ a i n ∣ R_i=\sum_{i=1,j\neq i}^{n}\limits \vert a_{ij}\vert = \vert a_{i1}\vert+\cdots+\vert a_{ii-1}\vert+\vert a_{ii+1}\vert+\cdots+\vert a_{in}\vert Ri=i=1,j=inaij=ai1++aii1+aii+1++ain ,规定第i个Ger圆为 G i = { Z ∣ ∣ Z − a i i ∣ ≤ R i } , Z ∈ C , i = 1 , 2 , ⋯   , n G_i=\{Z\mid \vert Z-a_{ii}\vert\le R_i\},Z\in C,i=1,2,\cdots,n Gi={ZZaiiRi},ZC,i=1,2,,n

b. 圆盘定理

方阵 A = ( a i j ) n × n A=(a_{ij})_{n\times n} A=(aij)n×n 的全体特征根都在A的n个Ger圆盘并集内,即 λ ( A ) = { λ 1 , ⋯   , λ n } ⊂ G 1 ∪ G 2 ∪ ⋯ ∪ G n = ⋃ i = 1 n G i = Δ G ( A ) \lambda(A)=\{\lambda_1,\cdots,\lambda_n\}\subset G_1\cup G_2\cup\cdots\cup G_n=\bigcup_{i=1}^{n}\limits G_i \overset{\Delta}{=}G(A) λ(A)={λ1,,λn}G1G2Gn=i=1nGi=ΔG(A)

即 Ger 圆盘并集 G ( A ) G(A) G(A) 覆盖了全体特征根 λ ( A ) ⊂ G ( A ) \lambda(A)\subset G(A) λ(A)G(A) ,A的全体特征根被 n个Ger圆盖住

在这里插入图片描述

eg

在这里插入图片描述

Ger圆为 G 1 : ∣ Z − a 11 ∣ = ∣ Z − 1 ∣ ≤ R 1 = 0.2 + 0.5 + 0.3 = 1 G 2 : ∣ Z − a 22 ∣ = ∣ Z − ( − 2 ) ∣ ≤ R 2 = 0.6 + 1 + 0.2 = 1.8 G 3 : ∣ Z − a 33 ∣ = ∣ Z − ( 3 ) ∣ ≤ R 3 = 0.3 + 0.4 + 0.7 = 1.4 G 4 : ∣ Z − a 44 ∣ = ∣ Z − ( − 5 ) ∣ ≤ R 4 = 0.2 + 0.3 + 0.3 = 0.8 \begin{aligned}&G_1:\vert Z-a_{11}\vert=\vert Z-1\vert\le R_1=0.2+0.5+0.3=1\\ &G_2:\vert Z-a_{22}\vert = \vert Z-(-2)\vert\le R_2=0.6+1+0.2=1.8\\ &G_3:\vert Z-a_{33}\vert = \vert Z-(3)\vert\le R_3=0.3+0.4+0.7=1.4\\ &G_4:\vert Z-a_{44}\vert = \vert Z-(-5)\vert\le R_4=0.2+0.3+0.3=0.8\\\end{aligned} G1:Za11=Z1∣R1=0.2+0.5+0.3=1G2:Za22=Z(2)R2=0.6+1+0.2=1.8G3:Za33=Z(3)R3=0.3+0.4+0.7=1.4G4:Za44=Z(5)R4=0.2+0.3+0.3=0.8

在这里插入图片描述

λ ( A ) ⊂ G 1 ∪ G 2 ∪ G 3 ∪ G 4 \lambda(A)\subset G_1\cup G_2 \cup G_3 \cup G_4 λ(A)G1G2G3G4

7.4.2 圆盘定理2:连通分支

若A的k个 Ger 圆相连(相切),且与其他 n − k n-k nk 个圆分离,称此 k k k 个圆的并集为一个连通分支,简称分支

  • 一个孤立圆盘是一个分支

设D是A的k个 Ger圆构成的分支,则D中恰有k个特征值(含重复)

如上述 G 1 G_1 G1 G 3 G_3 G3 为一个连通分支 , G 2 G_2 G2 G 4 G_4 G4 分别为一个分支,且A至少有2个实特征根

在这里插入图片描述

  • 独立圆盘必定包含一个实根,虚根必然成对出现在同一连通分支

eg
在这里插入图片描述

G 1 : ∣ Z − a 11 ∣ = ∣ Z − 9 ∣ ≤ R 1 = 1 + 2 + 1 = 4 G 2 : ∣ Z − a 22 ∣ = ∣ Z − 8 ∣ ≤ R 2 = 1 + 1 = 2 G 3 : ∣ Z − a 33 ∣ = ∣ Z − 4 ∣ ≤ R 3 = 1 G 4 : ∣ Z − a 44 ∣ = ∣ Z − 1 ∣ ≤ R 4 = 1 \begin{aligned} &G_1:\vert Z-a_{11}\vert=\vert Z-9\vert\le R_1=1+2+1=4\\ &G_2:\vert Z-a_{22}\vert=\vert Z-8\vert\le R_2=1+1=2\\ &G_3:\vert Z-a_{33}\vert=\vert Z-4\vert\le R_3=1\\ &G_4:\vert Z-a_{44}\vert=\vert Z-1\vert\le R_4=1\\ \end{aligned} G1:Za11=Z9∣R1=1+2+1=4G2:Za22=Z8∣R2=1+1=2G3:Za33=Z4∣R3=1G4:Za44=Z1∣R4=1
在这里插入图片描述

G 4 G_4 G4 为一个分支 D 1 D_1 D1 G 3 、 G 2 、 G 1 G_3、G_2、G_1 G3G2G1 为一个分支 D 2 D_2 D2。 由于虚根是成对出现的,且 D 1 D_1 D1 中只有一个特根, D 2 D_2 D2 中有3个特根,故 D 1 D_1 D1 中的特根一定是实根, D 2 D_2 D2 至少有一个实根
在这里插入图片描述

G 1 : ∣ Z − a 11 ∣ = ∣ Z − 20 ∣ ≤ R 1 = 5.3 G 2 : ∣ Z − a 22 ∣ = ∣ Z − 10 ∣ ≤ R 2 = 4.5 G 3 : ∣ Z − a 33 ∣ = ∣ Z − 10 i ∣ ≤ R 3 = 6 \begin{aligned} &G_1:\vert Z-a_{11}\vert=\vert Z-20\vert\le R_1=5.3\\ &G_2:\vert Z-a_{22}\vert=\vert Z-10\vert\le R_2=4.5\\ &G_3:\vert Z-a_{33}\vert=\vert Z-10i\vert\le R_3=6 \end{aligned} G1:Za11=Z20∣R1=5.3G2:Za22=Z10∣R2=4.5G3:Za33=Z10iR3=6
在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

7.4.3 许尔圆盘推论

a. 原点不在圆盘内,则A可逆

对方阵 A,若原点 0 ∉ G ( A ) 0\notin G(A) 0/G(A) ,即 0 0 0 在n个Ger圆之外,则A为可逆阵

反证: 若 0 ∉ G ( A ) , 且 A 不可逆,则 ∣ A ∣ = ∏ i = 0 n λ i = 0 , 即 0 ∈ λ ( A ) , 故 0 ∈ ⋃ i = 0 n G i ,矛盾 故方阵 A ,若原点 0 ∉ G ( A ) ,则 A 可逆 \begin{aligned} &反证:\\ &若0\notin G(A),且A不可逆,则 \vert A\vert =\prod_{i=0}^{n}\lambda_i=0,即0\in \lambda(A),故0\in \bigcup_{i=0}^nG_i ,矛盾\\ &故方阵A,若原点 0 \notin G(A),则A可逆 \end{aligned} 反证:0/G(A),A不可逆,则A=i=0nλi=0,0λ(A),0i=0nGi,矛盾故方阵A,若原点0/G(A),则A可逆

b. 对角占优阵一定可逆

A = ( a i j ) n , n A=(a_{ij})_{n,n} A=(aij)n,n 为行对角占优阵,则A可逆

A = ( a i j ) n , n A=(a_{ij})_{n,n} A=(aij)n,n 为列对角占优阵,则A可逆

在这里插入图片描述

c. k个分离Ger圆,则有k个不同根

A ∈ C n × n A\in C^{n\times n} ACn×n 的n个Ger圆中有k个独立的Ger圆,则A至少有k个互异特征根

  • 若A的n个Ger圆互相分离(都是孤立圆),则A是单阵(可对角化)

若实对称阵 A ∈ C n × n A\in C^{n\times n} ACn×n 的n个Ger圆中有k个独立的Ger圆,则A至少有k个互异实特征根
A 的 n 个 G e r 圆圆心都在实轴上,故每个孤立 G e r 圆中只能有一个特征值 实对称阵 A 若有复根,必共轭出现,故 G e r 圆中的特征值必为实特征值 A的n个Ger圆圆心都在实轴上,故每个孤立Ger圆中只能有一个特征值\\ 实对称阵A若有复根,必共轭出现,故Ger圆中的特征值必为实特征值 AnGer圆圆心都在实轴上,故每个孤立Ger圆中只能有一个特征值实对称阵A若有复根,必共轭出现,故Ger圆中的特征值必为实特征值
eg

在这里插入图片描述

R 1 = R 2 = R 3 = 3 4 , , 3 个 G e r 圆为 ∣ Z − 3 ∣ ≤ 3 4 , ∣ Z − 1 ∣ ≤ 3 4 , ∣ Z − 5 ∣ ≤ 3 4 \begin{aligned} &R_1=R_2=R_3=\frac{3}{4},,3个Ger圆为 \vert Z-3\vert\le \frac{3}{4},\vert Z-1\vert\le \frac{3}{4},\vert Z-5\vert\le \frac{3}{4}\\ \end{aligned} R1=R2=R3=43,3Ger圆为Z3∣43,Z1∣43,Z5∣43

在这里插入图片描述

可见3个Ger圆中心在x轴上,都是独立的圆,故A有3个不同特根,A为单阵

λ ≥ 1 − 3 4 , λ 2 ≥ 3 − 3 4 , λ 3 ≥ 5 − 3 4 , ⇒ ∣ A ∣ ≥ 1 4 ⋅ 9 4 ⋅ 17 4 = 9 × 17 64 \lambda\ge 1-\frac{3}{4},\lambda_2\ge 3-\frac{3}{4},\lambda_3\ge 5-\frac{3}{4},\Rightarrow \vert A\vert\ge \frac{1}{4}\cdot\frac{9}{4}\cdot\frac{17}{4}=\frac{9\times 17}{64} λ143,λ2343,λ3543,A4149417=649×17

d. A A A A T A^T AT 的Ger圆

由于A与 A T A^T AT 有相同特征值, λ ( A ) = λ ( A T ) \lambda(A)=\lambda(A^T) λ(A)=λ(AT),可用 A的Ger半径代替 A T 的 G e r 半径 A^T的Ger半径 ATGer半径

A的列圆盘定理:A的列圆盘为 G p ′ = { Z ∣ ∣ Z − a p p ∣ ≤ R p ~ } , p = 1 , 2 , ⋯   , n G_p'=\{Z|\vert Z-a_{pp}\vert\le \widetilde{R_p}\},p=1,2,\cdots,n Gp={Z∣∣ZappRp },p=1,2,,n ,其中 R p ~ = ∣ a 1 p ∣ + ⋯ + ∣ a p − 1 p ∣ + ∣ a p + 1 p ∣ + ⋯ + ∣ a n p ∣ \widetilde{R_p}=\vert a_{1p}\vert+\cdots+\vert a_{p-1p}\vert+\vert a_{p+1p}\vert+\cdots+\vert a_{np}\vert Rp =a1p++ap1p+ap+1p++anp 为列半径

对于 A T A^T AT 的Ger圆 G 1 ′ , G 2 ′ , ⋯   , G n ′ G_1',G_2',\cdots,G_n' G1,G2,,Gn A A A 的Ger圆 G 1 , G 2 , ⋯   , G n G_1,G_2,\cdots,G_n G1,G2,,Gn 有相同的圆心,故特征值 λ i ∈ ( ⋃ i = 1 n G i ) ⋂ ( ⋃ i = 1 n G i ′ ) , 1 ≤ i ≤ n \lambda_i\in (\bigcup_{i=1}^{n}\limits G_i)\bigcap(\bigcup_{i=1}^{n}\limits G_i'),1\le i\le n λi(i=1nGi)(i=1nGi),1in

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AmosTian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值