线性代数(五):特征值问题

特征值问题

定义5.1:设方阵 A n \bold A_n An,若存在数 λ \lambda λ与非零向量 X ⃗ \vec{X} X ,使得 A X ⃗ = λ X ⃗ A\vec{X}=\lambda\vec{X} AX =λX 则称 λ \lambda λ为方阵 A \bold A A特征值 X ⃗ \vec{X} X 为方阵 A \bold A A对应于 λ \lambda λ特征向量

Remark不可逆矩阵必有0特征值.
证明:若 A A A不可逆,则 A X ⃗ = 0 A\vec{X}=0 AX =0存在非零解 X ⃗ 0 \vec{X}_0 X 0,故 A X ⃗ 0 = 0 = 0 X ⃗ 0 A\vec{X}_0=0=0\vec{X}_0 AX 0=0=0X 0

特征值与特征向量的计算:

A X ⃗ = λ X ⃗ ⟺ ( A − λ E ) X ⃗ = 0 ( 1 ) A\vec{X}=\lambda\vec{X}\Longleftrightarrow (A-\lambda E)\vec{X}=0\qquad (1) AX =λX (AλE)X =0(1)
若(1)有非零解,则 f ( λ ) = d e t ( A − λ E ) = 0 f(\lambda)=det(A-\lambda E)=0 f(λ)=det(AλE)=0,将 f ( λ ) f(\lambda) f(λ)称作 A的特征多项式,求解出复数域的 n n n个特征值后则可反代入 ( 1 ) (1) (1)求解得到对应的特征向量。

关于特征多项式的展开:

f ( λ ) = d e t ( A − λ E ) = ∣ a 11 − λ a 12 a 13 a 14 … a 1 n a 21 a 22 − λ a 23 a 24 … a 1 n a 31 a 32 a 33 − λ a 34 … a 1 n a 41 a 42 a 43 a 44 − λ … a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 a n 3 a n 4 … a n n − λ ∣ = ∣ a 11 a 12 a 13 a 14 … a 1 n a 21 a 22 − λ a 23 a 24 … a 1 n a 31 a 32 a 33 − λ a 34 … a 1 n a 41 a 42 a 43 a 44 − λ … a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 a n 3 a n 4 … a n n − λ ∣ + ∣ − λ a 12 a 13 a 14 … a 1 n 0 a 22 − λ a 23 a 24 … a 1 n 0 a 32 a 33 − λ a 34 … a 1 n 0 a 42 a 43 a 44 − λ … a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ 0 a n 2 a n 3 a n 4 … a n n − λ ∣ = ∣ a 11 a 12 a 13 a 14 … a 1 n a 21 a 22 a 23 a 24 … a 1 n a 31 a 32 a 33 − λ a 34 … a 1 n a 41 a 42 a 43 a 44 − λ … a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 a n 2 a n 3 a n 4 … a n n − λ ∣ + ∣ a 11 0 a 13 a 14 … a 1 n a 21 − λ a 23 a 24 … a 1 n a 31 0 a 33 − λ a 34 … a 1 n a 41 0 a 43 a 44 − λ … a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ a n 1 0 a n 3 a n 4 … a n n − λ ∣ + ∣ − λ a 12 a 13 a 14 … a 1 n 0 a 22 a 23 a 24 … a 1 n 0 a 32 a 33 − λ a 34 … a 1 n 0 a 42 a 43 a 44 − λ … a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ 0 a n 2 a n 3 a n 4 … a n n − λ ∣ + ∣ − λ 0 a 13 a 14 … a 1 n 0 − λ a 23 a 24 … a 1 n 0 0 a 33 − λ a 34 … a 1 n 0 0 a 43 a 44 − λ … a 1 n ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 a n 3 a n 4 … a n n − λ ∣ 记符号 A ( n ) a i ↔ e i m 表示将 n 阶方阵的任意 m 个列向量 a i 替换为对应的单位向量 e i 后得到的 C n m 个矩阵,如 A ( 2 ) a i ↔ e i 1 = { [ 1 a 1 2 0 a 22 ] 、 [ a 11 0 a 21 1 ] } , 而 d e t ( A ( n ) a i ↔ e i m ) 表示这一组方阵行列式之和,那么: f ( λ ) = ∑ m = 0 n d e t ( A ( n ) a i ↔ λ e i m ) = ∑ m = 0 n ∑ l = 1 C n m ( − λ ) m P ( n − m ) l = ∑ m = 0 n ( − λ ) m ∑ l = 1 C n m P ( n − m ) l ( 说明:求解 d e t ( A ( n ) a i ↔ λ e i m ) 时按照 λ e i 所在的列展开, P ( n − m ) l 为一个 n − m 阶主子式 ) f(\lambda)=det(A-\lambda E)= \begin{vmatrix} %1 a_{11}-\lambda&a_{12}&a_{13}&a_{14}&\dots&a_{1n}\\ a_{21}&a_{22}-\lambda&a_{23}&a_{24}&\dots&a_{1n}\\ a_{31}&a_{32}&a_{33}-\lambda&a_{34}&\dots&a_{1n}\\ a_{41}&a_{42}&a_{43}&a_{44}-\lambda&\dots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&a_{n3}&a_{n4}&\dots&a_{nn}-\lambda\\ \end{vmatrix}= \begin{vmatrix} %2.1 a_{11}&a_{12}&a_{13}&a_{14}&\dots&a_{1n}\\ a_{21}&a_{22}-\lambda&a_{23}&a_{24}&\dots&a_{1n}\\ a_{31}&a_{32}&a_{33}-\lambda&a_{34}&\dots&a_{1n}\\ a_{41}&a_{42}&a_{43}&a_{44}-\lambda&\dots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&a_{n3}&a_{n4}&\dots&a_{nn}-\lambda\\ \end{vmatrix}+ \begin{vmatrix}%2.2 -\lambda&a_{12}&a_{13}&a_{14}&\dots&a_{1n}\\ 0&a_{22}-\lambda&a_{23}&a_{24}&\dots&a_{1n}\\ 0&a_{32}&a_{33}-\lambda&a_{34}&\dots&a_{1n}\\ 0&a_{42}&a_{43}&a_{44}-\lambda&\dots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\ 0&a_{n2}&a_{n3}&a_{n4}&\dots&a_{nn}-\lambda\\ \end{vmatrix}\\ \qquad\\= \begin{vmatrix}%3.1 a_{11}&a_{12}&a_{13}&a_{14}&\dots&a_{1n}\\ a_{21}&a_{22}&a_{23}&a_{24}&\dots&a_{1n}\\ a_{31}&a_{32}&a_{33}-\lambda&a_{34}&\dots&a_{1n}\\ a_{41}&a_{42}&a_{43}&a_{44}-\lambda&\dots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&a_{n3}&a_{n4}&\dots&a_{nn}-\lambda\\ \end{vmatrix}+ \begin{vmatrix}%3.2 a_{11}&0&a_{13}&a_{14}&\dots&a_{1n}\\ a_{21}&-\lambda&a_{23}&a_{24}&\dots&a_{1n}\\ a_{31}&0&a_{33}-\lambda&a_{34}&\dots&a_{1n}\\ a_{41}&0&a_{43}&a_{44}-\lambda&\dots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\ a_{n1}&0&a_{n3}&a_{n4}&\dots&a_{nn}-\lambda \end{vmatrix}+ \begin{vmatrix}%3.3 -\lambda&a_{12}&a_{13}&a_{14}&\dots&a_{1n}\\ 0&a_{22}&a_{23}&a_{24}&\dots&a_{1n}\\ 0&a_{32}&a_{33}-\lambda&a_{34}&\dots&a_{1n}\\ 0&a_{42}&a_{43}&a_{44}-\lambda&\dots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\ 0&a_{n2}&a_{n3}&a_{n4}&\dots&a_{nn}-\lambda\\ \end{vmatrix}+ \begin{vmatrix}%3.4 -\lambda&0&a_{13}&a_{14}&\dots&a_{1n}\\ 0&-\lambda&a_{23}&a_{24}&\dots&a_{1n}\\ 0&0&a_{33}-\lambda&a_{34}&\dots&a_{1n}\\ 0&0&a_{43}&a_{44}-\lambda&\dots&a_{1n}\\ \vdots&\vdots&\vdots&\vdots&&\vdots\\ 0&0&a_{n3}&a_{n4}&\dots&a_{nn}-\lambda\\ \end{vmatrix}\\ \quad\\ 记符号A_{(n)a_i\leftrightarrow e_i}^{m}表示将n阶方阵的任意m个列向量a_i替换为对应的单位向量e_i后得到的C_n^m个矩阵,如A_{(2)a_i\leftrightarrow e_i}^1=\{\begin{bmatrix}1&a_12\\0&a_{22}\end{bmatrix}、\begin{bmatrix}a_{11}&0\\a_{21}&1\end{bmatrix}\},而det(A_{(n)a_i\leftrightarrow e_i}^m)表示这一组方阵行列式之和,那么:\\\quad\\ f(\lambda)=\sum_{m=0}^ndet(A_{(n)a_i\leftrightarrow \lambda e_i}^m)=\sum_{m=0}^n\sum_{l=1}^{C_n^m}(-\lambda)^mP^l_{(n-m)}=\sum_{m=0}^n(-\lambda)^m\sum_{l=1}^{C_n^m}P^l_{(n-m)}(说明:求解det(A_{(n)a_i\leftrightarrow \lambda e_i}^m)时按照\lambda e_i所在的列展开,P^l_{(n-m)}为一个n-m阶主子式)\\ \quad f(λ)=det(AλE)= a11λa21a31a41an1a12a22λa32a42an2a13a23a33λa43an3a14a24a34a44λan4a1na1na1na1nannλ = a11a21a31a41an1a12a22λa32a42an2a13a23a33λa43an3a14a24a34a44λan4a1na1na1na1nannλ + λ0000a12a22λa32a42an2a13a23a33λa43an3a14a24a34a44λan4a1na1na1na1nannλ = a11a21a31a41an1a12a22a32a42an2a13a23a33λa43an3a14a24a34a44λan4a1na1na1na1nannλ + a11a21a31a41an10λ000a13a23a33λa43an3a14a24a34a44λan4a1na1na1na1nannλ + λ0000a12a22a32a42an2a13a23a33λa43an3a14a24a34a44λan4a1na1na1na1nannλ + λ00000λ000a13a23a33λa43an3a14a24a34a44λan4a1na1na1na1nannλ 记符号A(n)aieim表示将n阶方阵的任意m个列向量ai替换为对应的单位向量ei后得到的Cnm个矩阵,如A(2)aiei1={[10a12a22][a11a2101]},det(A(n)aieim)表示这一组方阵行列式之和,那么:f(λ)=m=0ndet(A(n)aiλeim)=m=0nl=1Cnm(λ)mP(nm)l=m=0n(λ)ml=1CnmP(nm)l(说明:求解det(A(n)aiλeim)时按照λei所在的列展开,P(nm)l为一个nm阶主子式)
上式说明特征多项式 ( − λ ) m (-\lambda)^m (λ)m项的系数为 n n n阶方阵 A A A所有 ( n − m ) (n-m) (nm)阶主子式的和

定理5.1:设 n n n阶方阵的 n n n个特征值为: λ i ( i = 1 , 2 , … , n ) \lambda_i\quad(i=1,2,\dots,n) λi(i=1,2,,n),则:
(1) d e t ( A ) = λ 1 λ 2 ∙ ⋯ ∙ λ n det(A)=\lambda_1\lambda_2\bullet\dots\bullet\lambda_n det(A)=λ1λ2λn
(2) λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n = t r ( A ) \lambda_1+\lambda_2+\dots+\lambda_n=a_{11}+a_{22}+\dots+a_{nn}=tr(A) λ1+λ2++λn=a11+a22++ann=tr(A)

(1)证明 d e t ( A − λ E ) = ( − λ + λ 1 ) ( − λ + λ 2 ) ∙ ⋯ ∙ ( − λ + λ n ) = ( − 1 ) n λ n + ( − 1 ) n − 1 ( λ 1 + λ 2 + ⋯ + λ n ) λ n − 1 + ⋯ + λ 1 λ 2 ∙ ⋯ ∙ λ n det(A-\lambda E)=(-\lambda+\lambda_1)(-\lambda+\lambda_2)\bullet\dots\bullet(-\lambda+\lambda_n)=(-1)^n\lambda^n+(-1)^{n-1}(\lambda_1+\lambda_2+\dots+\lambda_n)\lambda^{n-1}+\dots+\lambda_1\lambda_2\bullet\dots\bullet\lambda_n det(AλE)=(λ+λ1)(λ+λ2)(λ+λn)=(1)nλn+(1)n1(λ1+λ2++λn)λn1++λ1λ2λn
λ = 0 \lambda=0 λ=0,则 d e t ( A ) = λ 1 λ 2 ∙ ⋯ ∙ λ n det(A)=\lambda_1\lambda_2\bullet\dots\bullet\lambda_n det(A)=λ1λ2λn(证毕)

(2)证明
由(1)知特征值之和为 ( − λ ) n − 1 (-\lambda)^{n-1} (λ)n1的系数,应等于所有一阶主子式之和,即对角元素之和,那么:
λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n (证毕) \lambda_1+\lambda_2+\dots+\lambda_n=a_{11}+a_{22}+\dots+a_{nn}(证毕) λ1+λ2++λn=a11+a22++ann(证毕)

推论5.1:方阵 A n A_n An可逆 ⟺ \Longleftrightarrow 其特征值 λ i ≠ 0 ( i = 1 , 2 , … , n ) \lambda_i\ne0\quad(i=1,2,\dots,n) λi=0(i=1,2,,n)

定理5.2:方阵 A A A的特征值为 λ \lambda λ,特征向量为 X ⃗ \vec{X} X ,则
(1) A − 1 A^{-1} A1的特征值为 λ − 1 \lambda^{-1} λ1,特征向量为 X ⃗ \vec{X} X
(2)矩阵多项式 g ( A ) = a k A k + a k − 1 A k − 1 + ⋯ + a 1 A + a 0 E g(A)=a_kA^k+a_{k-1}A^{k-1}+\dots+a_1A+a_0E g(A)=akAk+ak1Ak1++a1A+a0E 的特征值为 g ( λ ) = a k λ k + a k − 1 λ k − 1 + ⋯ + a 1 λ + a 0 g(\lambda)=a_k\lambda^k+a_{k-1}\lambda^{k-1}+\dots+a_1\lambda+a_0 g(λ)=akλk+ak1λk1++a1λ+a0,特征向量为 X ⃗ \vec{X} X

(1)证明

A X ⃗ = λ X ⃗ ⟹ X ⃗ = A − 1 λ X ⃗ ⟹ A − 1 X ⃗ = λ − 1 X ⃗ \qquad A\vec{X}=\lambda\vec{X}\Longrightarrow \vec{X}=A^{-1}\lambda\vec{X}\Longrightarrow A^{-1}\vec{X}=\lambda^{-1}\vec{X} AX =λX X =A1λX A1X =λ1X (证毕)

(2)证明

g ( A ) X ⃗ = a k A k X ⃗ + a k − 1 A k − 1 X ⃗ + ⋯ + a 1 A X ⃗ + a 0 X ⃗ \qquad g(A)\vec{X}=a_kA^k\vec{X}+a_{k-1}A^{k-1}\vec{X}+\dots+a_1A\vec{X}+a_0\vec{X} g(A)X =akAkX +ak1Ak1X ++a1AX +a0X

= a k λ k X ⃗ + a k − 1 λ k − 1 X ⃗ + ⋯ + a 1 λ X ⃗ + a 0 X ⃗ = g ( λ ) X ⃗ \qquad =a_k\lambda^k\vec{X}+a_{k-1}\lambda^{k-1}\vec{X}+\dots+a_1\lambda\vec{X}+a_0\vec{X}=g(\lambda)\vec{X} =akλkX +ak1λk1X ++a1λX +a0X =g(λ)X (证毕)

由于 λ i \lambda_i λi对应的特征向量集合是 ( A − λ i E ) X ⃗ = 0 (A-\lambda_i E)\vec{X}=0 (AλiE)X =0的解空间,故 λ i \lambda_i λi对应的特征向量的线性组合仍然是 λ i \lambda_i λi对应的特征向量

定理5.3:不同特征值对应的特征向量线性无关。
证明:采用数学归纳法:
  \ \qquad   X ⃗ 1 \vec{X}_1 X 1 X ⃗ 2 \vec{X}_2 X 2分别为 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2对应的特征向量 ( λ 1 ≠ λ 2 ) (\lambda_1\ne \lambda_2) (λ1=λ2)
  \ \qquad   k 1 X ⃗ 1 + k 2 X ⃗ 2 = 0 ( 1 ) k_1\vec{X}_1+k_2\vec{X}_2=0\qquad (1) k1X 1+k2X 2=0(1)
  \ \qquad   A ( k 1 X ⃗ 1 + k 2 X ⃗ 2 ) = k 1 λ 1 X ⃗ 1 + k 2 λ 2 X ⃗ 2 = 0 ( 2 ) A(k_1\vec{X}_1+k_2\vec{X}_2)=k_1\lambda_1\vec{X}_1+k_2\lambda_2\vec{X}_2=0\qquad (2) A(k1X 1+k2X 2)=k1λ1X 1+k2λ2X 2=0(2)
  \ \qquad  那么, ( 1 ) × λ 1 − ( 2 ) : k 2 ( λ 1 − λ 2 ) X ⃗ 2 = 0 ⟹ k 2 = 0 (1)\times\lambda_1-(2):k_2(\lambda_1-\lambda_2)\vec{X}_2=0\Longrightarrow k_2=0 (1)×λ1(2):k2(λ1λ2)X 2=0k2=0
     \ \qquad\ \ \qquad     ( 1 ) × λ 2 − ( 2 ) : k 1 ( λ 2 − λ 1 ) X ⃗ 2 = 0 ⟹ k 1 = 0 (1)\times\lambda_2-(2):k_1(\lambda_2-\lambda_1)\vec{X}_2=0\Longrightarrow k_1=0 (1)×λ2(2):k1(λ2λ1)X 2=0k1=0
  \ \qquad  即, X ⃗ 1 \vec{X}_1 X 1 X ⃗ 2 \vec{X}_2 X 2线性无关。
  \ \qquad  假设 λ 1 , λ 2 , … , λ r − 1 \lambda_1,\lambda_2,\dots,\lambda_{r-1} λ1,λ2,,λr1对应的特征向量 X ⃗ 1 , X ⃗ 2 , … , X ⃗ r − 1 \vec{X}_1,\vec{X}_2,\dots,\vec{X}_{r-1} X 1,X 2,,X r1线性无关
  \ \qquad  讨论 X ⃗ 1 , X ⃗ 2 , … , X ⃗ r − 1 , X ⃗ r \vec{X}_1,\vec{X}_2,\dots,\vec{X}_{r-1},\vec{X}_r X 1X 2X r1X r的线性相关性。
  \ \qquad   k 1 X ⃗ 1 + k 2 X ⃗ 2 + ⋯ + k r X ⃗ r = 0 ( 3 ) k_1\vec{X}_1+k_2\vec{X}_2+\dots+k_r\vec{X}_r=0\qquad (3) k1X 1+k2X 2++krX r=0(3)
  \ \qquad   A ( k 1 X ⃗ 1 + k 2 X ⃗ 2 + ⋯ + k r X ⃗ r ) = k 1 λ 1 X ⃗ 1 + k 2 λ 2 X ⃗ 2 + ⋯ + k r λ r X ⃗ r = 0 ( 4 ) A(k_1\vec{X}_1+k_2\vec{X}_2+\dots+k_r\vec{X}_r)=k_1\lambda_1\vec{X}_1+k_2\lambda_2\vec{X}_2+\dots+k_r\lambda_r\vec{X}_r=0\qquad (4) A(k1X 1+k2X 2++krX r)=k1λ1X 1+k2λ2X 2++krλrX r=0(4)
  \ \qquad  那么, ( 3 ) × λ r − ( 4 ) : (3)\times\lambda_r-(4): (3)×λr(4):
k 1 ( λ r − λ 1 ) X ⃗ 1 + k 2 ( λ r − λ 2 ) X ⃗ 2 + ⋯ + k r − 1 ( λ r − λ r − 1 ) X ⃗ r − 1 = 0 k_1(\lambda_r-\lambda_1)\vec{X}_1+k_2(\lambda_r-\lambda_2)\vec{X}_2+\dots+k_{r-1}(\lambda_r-\lambda_{r-1})\vec{X}_{r-1}=0 k1(λrλ1)X 1+k2(λrλ2)X 2++kr1(λrλr1)X r1=0
  \ \qquad  由于 X ⃗ 1 , X ⃗ 2 , … X ⃗ r − 1 \vec{X}_1,\vec{X}_2,\dots\vec{X}_{r-1} X 1X 2X r1线性无关
  \ \qquad   k i ( λ r − λ i ) = 0   ( i = 1 , … , r − 1 ) ⟹ k i = 0   ( i = 1 , … , r − 1 ) k_{i}(\lambda_r-\lambda_{i})=0\ (i=1,\dots,r-1)\Longrightarrow k_i=0\ (i=1,\dots,r-1) ki(λrλi)=0 (i=1,,r1)ki=0 (i=1,,r1)
  \ \qquad  带入式(3), k r = 0 k_r=0 kr=0
  \ \qquad  故, X ⃗ 1 , X ⃗ 2 , … , X ⃗ r − 1 , X ⃗ r \vec{X}_1,\vec{X}_2,\dots,\vec{X}_{r-1},\vec{X}_r X 1X 2X r1X r线性无关。

定理5.4:将不同特征值对应的线性无关特征向量组进行组合得到的向量组依然线性无关。即,
λ 1 , λ 2 , … , λ r \lambda_1,\lambda_2,\dots,\lambda_{r} λ1λ2,λr A A A的不同特征值且 X ⃗ 1 i , X ⃗ 2 i , … , X ⃗ s i , i \vec{X}_{1i},\vec{X}_{2i},\dots,\vec{X}_{s_i,i} X 1iX 2iX si,i为特征值 λ i \lambda_i λi对应的 s i s_i si个线性无关的特征向量,则 X ⃗ 11 , X ⃗ 21 , … , X ⃗ s 1 , 1 , X ⃗ 12 , X ⃗ 22 , … , X ⃗ s 2 , 2 , X ⃗ 1 r , X ⃗ 2 r , … , X ⃗ s r , r \vec{X}_{11},\vec{X}_{21},\dots,\vec{X}_{s_1,1},\vec{X}_{12},\vec{X}_{22},\dots,\vec{X}_{s_2,2},\vec{X}_{1r},\vec{X}_{2r},\dots,\vec{X}_{s_r,r} X 11X 21X s1,1X 12X 22X s2,2X 1rX 2rX sr,r向量组依然线性无关。

证明:令 ∑ j = 1 s i k j i X ⃗ j i = ∑ j = 1 s 1 k j 1 X ⃗ j 1 + ∑ j = 1 s 2 k j 2 X ⃗ j 2 + ⋯ + ∑ j = 1 s r k j r X ⃗ j r = Z ⃗ 1 + Z ⃗ 2 + ⋯ + Z ⃗ r \sum_{j=1}^{s_i}k_{ji}\vec{X}_{ji}=\sum_{j=1}^{s_1}k_{j1}\vec{X}_{j1}+\sum_{j=1}^{s_2}k_{j2}\vec{X}_{j2}+\dots+\sum_{j=1}^{s_r}k_{jr}\vec{X}_{jr}=\vec{Z}_{1}+\vec{Z}_{2}+\dots+\vec{Z}_{r} j=1sikjiX ji=j=1s1kj1X j1+j=1s2kj2X j2++j=1srkjrX jr=Z 1+Z 2++Z r
由于 λ i \lambda_i λi对应的特征向量的线性组合 Z ⃗ i \vec{Z}_{i} Z i仍然是 λ i \lambda_i λi对应的特征向量,则
Z ⃗ 1 + Z ⃗ 2 + ⋯ + Z ⃗ r = 0 \vec{Z}_{1}+\vec{Z}_{2}+\dots+\vec{Z}_{r}=0 Z 1+Z 2++Z r=0成立当且仅当 Z ⃗ i = 0   ( i = 1 , … , r ) \vec{Z}_{i}=0\ (i=1,\dots,r) Z i=0 (i=1,,r)
又,选取的是同一特征值对应的线性无关特征向量,则 k j i = 0 k_{ji}=0 kji=0.
故,将不同特征值对应的线性无关特征向量组进行组合得到的向量组依然线性无关。(证毕)
定理5.4:代数重数(特征多项式根 λ \lambda λ的重数) ≥ \ge 几何重数( λ \lambda λ对应的特征向量构成的向量空间的维数)。
证明:过程参考出处
  \ \qquad   λ \lambda λ为方阵 A n A_n An的一个特征值,并假设其对应的特征向量构成的向量空
  \ \qquad   V V V( R n 的子空间 ) R^n的子空间) Rn的子空间)维数为 r r r,基为 { α ⃗ 1 , α ⃗ 2 , … , α ⃗ r } \{\vec{\alpha}_1,\vec{\alpha}_2,\dots,\vec{\alpha}_r\} {α 1,α 2,,α r},将其扩充为 R n R^n Rn
  \ \qquad  的一组基 { α ⃗ 1 , α ⃗ 2 , … , α ⃗ r , α ⃗ r + 1 , . . . , , α ⃗ n } \{\vec{\alpha}_1,\vec{\alpha}_2,\dots,\vec{\alpha}_r,\vec{\alpha}_{r+1},...,,\vec{\alpha}_n\} {α 1,α 2,,α r,α r+1,...,,α n}

  \ \qquad   { A α ⃗ i = λ α ⃗ i ( i = 1 , . . . , r ) A α ⃗ i = k 1 i α ⃗ 1 + k 2 i α ⃗ 2 + . . . + k n i α ⃗ n   ( i = r + 1 , . . . , n ) \begin{cases}A\vec{\alpha}_i=\lambda\vec{\alpha}_i\qquad (i=1,...,r)\\ A\vec{\alpha}_i=k_{1i}\vec{\alpha}_1+k_{2i}\vec{\alpha}_2+...+k_{ni}\vec{\alpha}_n\ (i=r+1,...,n)\end{cases} {Aα i=λα i(i=1,...,r)Aα i=k1iα 1+k2iα 2+...+kniα n (i=r+1,...,n)
  \ \qquad  即,
A [ α ⃗ 1 , α ⃗ 2 , … , α ⃗ r , α ⃗ r + 1 , . . . , α ⃗ n ] = [ α ⃗ 1 , α ⃗ 2 , … , α ⃗ r , α ⃗ r + 1 , … , α ⃗ n ] [ λ   0   …   0 k 1 , r + 1   … k 1 , n 0   λ   …   0 k 2 , r + 1   … k 2 , n ⋮ 0   0   …   λ k r , r + 1   … k r , n 0   0   …   0   k r + 1 , r + 1   …   k r + 1 , n 0   0   …   0   k r + 2 , r + 1   …   k r + 2 , n ⋮ 0   0   …   0 k n , r + 1   … k n , n ] A[\vec{\alpha}_1,\vec{\alpha}_2,\dots,\vec{\alpha}_r,\vec{\alpha}_{r+1},...,\vec{\alpha}_n]=[\vec{\alpha}_1,\vec{\alpha}_2,\dots,\vec{\alpha}_r,\vec{\alpha}_{r+1},\dots,\vec{\alpha}_n]\begin{bmatrix} \lambda\ 0\ \dots \ 0\quad k_{1,r+1}\ \dots \quad k_{1,n}\\ 0\ \lambda\ \dots \ 0\quad k_{2,r+1}\ \dots \quad k_{2,n}\\ \vdots \\ 0\ 0\ \dots \ \lambda\quad k_{r,r+1}\ \dots \quad k_{r,n}\\ 0\ 0\ \dots \ 0\ k_{r+1,r+1}\ \dots \ k_{r+1,n}\\ 0\ 0\ \dots \ 0\ k_{r+2,r+1}\ \dots \ k_{r+2,n}\\ \vdots \\ 0\ 0\ \dots \ 0\quad k_{n,r+1}\ \dots \quad k_{n,n} \end{bmatrix} A[α 1,α 2,,α r,α r+1,...,α n]=[α 1,α 2,,α r,α r+1,,α n] λ 0  0k1,r+1 k1,n0 λ  0k2,r+1 k2,n0 0  λkr,r+1 kr,n0 0  0 kr+1,r+1  kr+1,n0 0  0 kr+2,r+1  kr+2,n0 0  0kn,r+1 kn,n
  \ \qquad  
( A − λ ′ E ) [ α ⃗ 1 , α ⃗ 2 , … , α ⃗ r , α ⃗ r + 1 , . . . , α ⃗ n ] = [ α ⃗ 1 , α ⃗ 2 , … , α ⃗ r , α ⃗ r + 1 , … , α ⃗ n ] [ ( λ − λ ′ ) 0 … 0 k 1 , r + 1 … k 1 , n 0 ( λ − λ ′ ) … 0 k 2 , r + 1 … k 2 , n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 … ( λ − λ ′ ) k r , r + 1 … k r , n 0 0 … 0 ( k r + 1 , r + 1 − λ ′ ) … k r + 1 , n 0 0 … 0 k r + 2 , r + 1 … k r + 2 , n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 … 0 k n , r + 1 … ( k n , n − λ ′ ) ] (A-\lambda'E)[\vec{\alpha}_1,\vec{\alpha}_2,\dots,\vec{\alpha}_r,\vec{\alpha}_{r+1},...,\vec{\alpha}_n]=[\vec{\alpha}_1,\vec{\alpha}_2,\dots,\vec{\alpha}_r,\vec{\alpha}_{r+1},\dots,\vec{\alpha}_n]\begin{bmatrix} (\lambda-\lambda') & 0 & \dots & 0 & k_{1,r+1} & \dots & k_{1,n}\\ 0& (\lambda-\lambda')& \dots & 0& k_{2,r+1}& \dots & k_{2,n}\\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\ 0& 0& \dots & (\lambda-\lambda')& k_{r,r+1}& \dots& k_{r,n}\\ 0& 0& \dots & 0& (k_{r+1,r+1}-\lambda')& \dots & k_{r+1,n}\\ 0& 0& \dots & 0& \quad k_{r+2,r+1} & \dots & k_{r+2,n}\\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\ 0& 0& \dots & 0& k_{n,r+1}&\dots & (k_{n,n}-\lambda') \end{bmatrix} (AλE)[α 1,α 2,,α r,α r+1,...,α n]=[α 1,α 2,,α r,α r+1,,α n] (λλ)000000(λλ)000000(λλ)000k1,r+1k2,r+1kr,r+1(kr+1,r+1λ)kr+2,r+1kn,r+1k1,nk2,nkr,nkr+1,nkr+2,n(kn,nλ)
  \ \qquad   d e t ( [ α ⃗ 1 , α ⃗ 2 , … , α ⃗ r , α ⃗ r + 1 , . . . , α ⃗ n ] ) ≠ 0 det([\vec{\alpha}_1,\vec{\alpha}_2,\dots,\vec{\alpha}_r,\vec{\alpha}_{r+1},...,\vec{\alpha}_n])\ne0 det([α 1,α 2,,α r,α r+1,...,α n])=0进一步有特征多项式:
d e t ( A − λ ′ E ) = ∣ ( λ − λ ′ ) 0 … 0 k 1 , r + 1 … k 1 , n 0 ( λ − λ ′ ) … 0 k 2 , r + 1 … k 2 , n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 … ( λ − λ ′ ) k r , r + 1 … k r , n 0 0 … 0 ( k r + 1 , r + 1 − λ ′ ) … k r + 1 , n 0 0 … 0 k r + 2 , r + 1 … k r + 2 , n ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 … 0 k n , r + 1 … ( k n , n − λ ′ ) ∣ = ∣ ( λ − λ ′ ) 0 … 0 0 ( λ − λ ′ ) … 0 ⋮ ⋮ ⋮ ⋮ 0 0 … ( λ − λ ′ ) ∣ r × r ∣ ( k r + 1 , r + 1 − λ ′ ) … k r + 1 , n k r + 2 , r + 1 … k r + 2 , n ⋮ ⋮ ⋮ k n , r + 1 … ( k n , n − λ ′ ) ∣ ( n − r ) × ( n − r ) = ( λ − λ ′ ) r g ( λ ′ ) det(A-\lambda'E)=\begin{vmatrix} (\lambda-\lambda') & 0 & \dots & 0 & k_{1,r+1} & \dots & k_{1,n}\\ 0& (\lambda-\lambda')& \dots & 0& k_{2,r+1}& \dots & k_{2,n}\\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\ 0& 0& \dots & (\lambda-\lambda')& k_{r,r+1}& \dots& k_{r,n}\\ 0& 0& \dots & 0& (k_{r+1,r+1}-\lambda')& \dots & k_{r+1,n}\\ 0& 0& \dots & 0& k_{r+2,r+1} & \dots & k_{r+2,n}\\ \vdots &\vdots &\vdots &\vdots &\vdots &\vdots &\vdots \\ 0& 0& \dots & 0& k_{n,r+1}&\dots & (k_{n,n}-\lambda') \end{vmatrix}=\begin{vmatrix} (\lambda-\lambda') & 0 & \dots & 0 \\ 0& (\lambda-\lambda')& \dots & 0\\ \vdots& \vdots&\vdots&\vdots\\ 0& 0& \dots & (\lambda-\lambda')\\ \end{vmatrix}_{r\times r}\begin{vmatrix} (k_{r+1,r+1}-\lambda')& \dots & k_{r+1,n}\\ k_{r+2,r+1} & \dots & k_{r+2,n}\\ \vdots &\vdots &\vdots \\ k_{n,r+1}&\dots & (k_{n,n}-\lambda') \end{vmatrix}_{(n-r)\times (n-r)}=(\lambda-\lambda')^rg(\lambda') det(AλE)= (λλ)000000(λλ)000000(λλ)000k1,r+1k2,r+1kr,r+1(kr+1,r+1λ)kr+2,r+1kn,r+1k1,nk2,nkr,nkr+1,nkr+2,n(kn,nλ) = (λλ)000(λλ)000(λλ) r×r (kr+1,r+1λ)kr+2,r+1kn,r+1kr+1,nkr+2,n(kn,nλ) (nr)×(nr)=(λλ)rg(λ)
显然, d e t ( A − λ ′ E ) = ( λ − λ ′ ) r g ( λ ′ ) = 0 det(A-\lambda'E)=(\lambda-\lambda')^rg(\lambda')=0 det(AλE)=(λλ)rg(λ)=0的根 λ \lambda λ的重数大于等于 r r r。(证毕)

定理5.5实对称方阵的特征值为实数,且不同特征值对应的特征向量正交。

证明:设 λ \lambda λ为实对称矩阵 A n × n \bold A_{n\times n} An×n的特征值, X ⃗ \vec{X} X λ \lambda λ对应的 A \bold A A的特征向量,则 A X ⃗ = λ X ⃗ ( 1 ) \bold{A}\vec{X}=\lambda\vec{X}\qquad(1) AX =λX (1)    \ \ \qquad    ( 1 ) (1) (1)式进行共轭转置并右乘 X ⃗ \vec{X} X 得: X ⃗ ˉ T A ˉ T X ⃗ = λ ˉ X ⃗ ˉ T X ⃗ ( 2 ) \bar{\vec{X}}^T\bar{\bold{A}}^T\vec{X}=\bar{\lambda}\bar{\vec{X}}^T\vec{X}\qquad(2) X ˉTAˉTX =λˉX ˉTX (2)    \ \ \qquad   又由 ( 1 ) (1) (1)得: X ⃗ ˉ T A X ⃗ = λ X ⃗ ˉ T X ⃗ ( 3 ) \bar{\vec{X}}^T\bold{A}\vec{X}=\lambda\bar{\vec{X}}^T\vec{X}\qquad(3) X ˉTAX =λX ˉTX (3)    \ \ \qquad    ( 2 ) − ( 3 ) (2)-(3) (2)(3)得: ( λ ˉ − λ ) X ⃗ ˉ T X ⃗ = 0 (\bar{\lambda}-\lambda)\bar{\vec{X}}^T\vec{X}=0 (λˉλ)X ˉTX =0    \ \ \qquad   由于 X ⃗ ≠ 0 \vec{X}\ne 0 X =0,故 λ ˉ = λ \bar{\lambda}=\lambda λˉ=λ,即特征值 λ \lambda λ为实数。
   \ \ \qquad    X ⃗ 1 , X ⃗ 2 \vec{X}_1,\vec{X}_2 X 1,X 2分别为互异特征值 λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2对应的特征向量,则: { A X ⃗ 1 = λ 1 X ⃗ 1 A X ⃗ 2 = λ 2 X ⃗ 2 ⟹ ( λ 1 X ⃗ 1 , X ⃗ 2 ) = ( A X ⃗ 1 , X ⃗ 2 ) = X ⃗ 1 T A T X ⃗ 2 = X ⃗ 1 T A X ⃗ 2 = ( X ⃗ 1 , A X ⃗ 2 ) = ( X ⃗ 1 , λ 2 X ⃗ 2 ) ⟹ ( λ 1 − λ 2 ) ( X ⃗ 1 , X ⃗ 2 ) = 0 \begin{cases}A\vec{X}_1=\lambda_1\vec{X}_1\\ A\vec{X}_2=\lambda_2\vec{X}_2\end{cases}\Longrightarrow(\lambda_1\vec{X}_1,\vec{X}_2)=(A\vec{X}_1,\vec{X}_2)=\vec{X}_1^TA^T\vec{X}_2=\vec{X}_1^TA\vec{X}_2=(\vec{X}_1,A\vec{X}_2)=(\vec{X}_1,\lambda_2\vec{X}_2)\Longrightarrow(\lambda_1-\lambda_2)(\vec{X}_1,\vec{X}_2)=0 {AX 1=λ1X 1AX 2=λ2X 2(λ1X 1,X 2)=(AX 1,X 2)=X 1TATX 2=X 1TAX 2=(X 1,AX 2)=(X 1,λ2X 2)(λ1λ2)(X 1,X 2)=0    \ \ \qquad    ( X ⃗ 1 , X ⃗ 2 ) = 0 (\vec{X}_1,\vec{X}_2)=0 (X 1,X 2)=0(证毕)

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值