(十 六)二阶张量的分解——乘法分解(极分解)

1. 仿射量极分解的存在性与唯一性

定理 正则的二阶张量 T \bold T T必定可以唯一分解为正交张量 Q \bold Q Q与正张量(对称正定仿射量) U / V \bold{U/V} U/V的点积:
T = Q ∙ U ( 右极分解 )   T = V ∙ Q ( 左极分解 ) \bold{T}=\bold{Q}\bullet\bold{U}\quad(右极分解)\\\ \\ \bold{T}=\bold{V}\bullet\bold{Q}\quad(左极分解) T=QU(右极分解) T=VQ(左极分解)
且有
U = T T ∙ T   V = T ∙ T T   U = Q T ∙ V ∙ Q \bold{U}=\sqrt{\bold{T}^T\bullet\bold{T}}\\\ \\ \bold{V}=\sqrt{\bold{T}\bullet\bold{T}^T}\\\ \\ \bold{U=Q^T\bullet V \bullet Q} U=TTT  V=TTT  U=QTVQ

证明如下:

由于对于正则二阶张量 T \bold T T,张量 T T ∙ T \bold{T}^T\bullet\bold{T} TTT T ∙ T T \bold{T}\bullet\bold{T}^T TTT 为正张量。记
U = T T ∙ T ( a )   V = T ∙ T T ( b ) \bold{U}=\sqrt{\bold{T}^T\bullet\bold{T}}\qquad(a)\\\ \\ \bold{V}=\sqrt{\bold{T}\bullet\bold{T}^T}\qquad(b) U=TTT (a) V=TTT (b)
U 、 V \bold {U、V} UV 为正张量,也是正则的,一般, U ≠ V \bold{U\ne V} U=V,那么
T = ( T ∙ U − 1 ) ∙ U ≜ Q ∙ U   T = V ∙ ( V − 1 ∙ T ) ≜ V ∙ Q 1 \bold T=\bold{(T\bullet U^{-1})\bullet U}\triangleq\bold{Q\bullet U}\\\ \\ \bold T=\bold{V\bullet(V^{-1}\bullet T) }\triangleq\bold{V\bullet Q_1} T=(TU1)UQU T=V(V1T)VQ1
因为,
Q ∙ Q T = ( T ∙ U − 1 ) ∙ ( T ∙ U − 1 ) T = T ∙ U − 2 ∙ T T = T ∙ ( T − 1 ∙ T − T ) ∙ T T = G   Q 1 ∙ Q 1 T = ( V − 1 ∙ T ) ∙ ( V − 1 ∙ T ) T = V − 1 ∙ T ∙ T T ∙ V − 1 = V − 1 ∙ V 2 ∙ V − 1 = G \bold{Q\bullet Q^T}=\bold{(T\bullet U^{-1})}\bullet\bold{(T\bullet U^{-1})}^T=\bold{T\bullet U^{-2}\bullet T^T}=\bold{T\bullet (\bold{T}^{-1}\bullet\bold{T}^{-T})\bullet T^T}=\bold G\\\ \\ \bold{Q_1\bullet Q_1^T}=\bold{(V^{-1}\bullet T)}\bullet\bold{(V^{-1}\bullet T)}^T=\bold{V^{-1}\bullet T\bullet T^T\bullet V^{-1}}=\bold{V^{-1}\bullet V^2\bullet V^{-1}}=\bold G QQT=(TU1)(TU1)T=TU2TT=T(T1TT)TT=G Q1Q1T=(V1T)(V1T)T=V1TTTV1=V1V2V1=G
故, Q 、 Q 1 \bold{Q、Q_1} QQ1为正交张量。上述讨论说明了极分解的存在性,继续证其唯一性:

假设存在:
T = Q ∙ U = Q ′ ∙ U ′ ⟹ Q T ∙ Q ′ ∙ U ′ = U   T = V ∙ Q 1 = V ′ ∙ Q 1 ′ ⟹ V ′ ∙ Q 1 ′ ∙ Q 1 T = V \bold T=\bold{Q\bullet U}=\bold{Q'\bullet U'}\Longrightarrow\bold{Q^T\bullet Q'\bullet U'}=\bold U \\\ \\ \bold T=\bold{V\bullet Q_1}=\bold{V'\bullet Q'_1}\Longrightarrow\bold{V'\bullet Q'_1\bullet Q_1^T}=\bold V T=QU=QUQTQU=U T=VQ1=VQ1VQ1Q1T=V
那么
U 2 = U T ∙ U = ( U ′ T ∙ Q ′ T ∙ Q ) ∙ ( Q T ∙ Q ′ ∙ U ′ ) = U ′ T ∙ U ′ = U ′ 2 ⟹ U = U ′   V 2 = V ∙ V T = ( V ′ ∙ Q 1 ′ ∙ Q 1 T ) ∙ [ Q 1 ∙ ( Q 1 ′ ) T ∙ ( V ′ ) T ] = V ′ ∙ V ′ T = V ′ 2 ⟹ V = V ′ \bold{U}^2=\bold{U^T\bullet U}=(\bold{U'^T\bullet Q'^T\bullet Q})\bullet(\bold{Q^T\bullet Q'\bullet U'})=\bold{U'^T\bullet U'}=\bold U'^2\Longrightarrow\bold{U=U'}\\\ \\ \bold{V}^2=\bold{V\bullet V^T}=(\bold{V'\bullet Q'_1\bullet Q_1^T})\bullet[\bold{Q_1\bullet(Q'_1)^T\bullet(V')^T}]=\bold{V'\bullet V'^T}=\bold V'^2\Longrightarrow\bold{V=V'} U2=UTU=(U′TQ′TQ)(QTQU)=U′TU=U′2U=U V2=VVT=(VQ1Q1T)[Q1(Q1)T(V)T]=VV′T=V′2V=V
进一步有:
( Q − Q ′ ) ∙ U = 0 ⟹ Q = Q ′   V ∙ ( Q 1 − Q 1 ′ ) = 0 ⟹ Q 1 = Q 1 ′ \bold{(Q-Q')\bullet U}=0\Longrightarrow\bold{Q=Q'} \\\ \\ \bold{V}\bullet\bold{(Q_1-Q'_1)}=0\Longrightarrow\bold{Q_1=Q'_1} (QQ)U=0Q=Q V(Q1Q1)=0Q1=Q1
我们已分别证明了正则张量左极分解与右极分解的唯一性。最后,证明左极分解与右极分解用到的正交张量相同,即 Q = Q 1 \bold{Q=Q_1} Q=Q1

由于
T = Q ∙ U = Q 1 ∙ ( Q 1 T ∙ V ∙ Q 1 ) \bold T=\bold{Q\bullet U}=\bold{Q_1\bullet( Q_1^T\bullet V\bullet Q_1}) T=QU=Q1(Q1TVQ1)

∀   u ⃗ , u ⃗ ∙ ( Q 1 T ∙ V ∙ Q 1 ) ∙ u ⃗ = ( Q 1 ∙ u ⃗ ) T ∙ V ∙ ( Q 1 ∙ u ⃗ ) > 0   ( Q 1 T ∙ V ∙ Q 1 ) T = Q 1 T ∙ V ∙ Q 1 \forall\ \vec{u},\vec{u}\bullet(\bold{Q_1^T\bullet V\bullet Q_1})\bullet\vec{u}=(\bold Q_1\bullet\vec{u})^T\bullet \bold V\bullet( \bold Q_1\bullet\vec{u})>0\\\ \\ (\bold{Q_1^T\bullet V\bullet Q_1})^T=\bold{Q_1^T\bullet V\bullet Q_1}  u u (Q1TVQ1)u =(Q1u )TV(Q1u )>0 (Q1TVQ1)T=Q1TVQ1
那么, Q 1 T ∙ V ∙ Q 1 \bold{Q_1^T\bullet V\bullet Q_1} Q1TVQ1为正张量,根据右极分解的唯一性:
Q = Q 1   U = Q T ∙ V ∙ Q ( c ) \bold{Q=Q_1}\\\ \\ \bold{U=Q^T\bullet V \bullet Q} \qquad(c) Q=Q1 U=QTVQ(c)
(证毕)

2. 左、右极分解正张量特征值与特征向量的关系

定义 对于仿射量 A 、 B \bold{A、B} AB,若存在正则二阶张量 R \bold R R使得:
A = R − 1 ∙ B ∙ R \bold{A=R^{-1}\bullet B\bullet R} A=R1BR
则称, A 、 B \bold{A}、\bold{B} AB互为相似张量

由于,
d e t ( A − λ G ) = d e t ( R − 1 ∙ ( B − λ G ) ∙ R ) = d e t ( B − λ G ) det(\bold A-\lambda \bold G)=det(\bold{R^{-1}\bullet (B-\lambda G)\bullet R})=det(\bold{B-\lambda G}) det(AλG)=det(R1(BλG)R)=det(BλG)
即,相似张量具有相同的特征值

定义 对于仿射量 A 、 B \bold{A、B} AB,若存在正交二阶张量 Q \bold Q Q使得:
A = Q T ∙ B ∙ Q \bold{A=Q^{T}\bullet B\bullet Q} A=QTBQ
则称, A 、 B \bold{A}、\bold{B} AB互为正交相似张量

对于任意仿射量的左右极分解所采用的正张量 U 、 V \bold{U}、\bold{V} UV满足:
U = Q T ∙ V ∙ Q \bold{U=Q^T\bullet V \bullet Q} U=QTVQ
左、右极分解所采用的正张量 U 、 V \bold{U}、\bold{V} UV互为正交相似张量,它们具有相同的特征值: λ i U = λ i V = λ i \lambda_i^U=\lambda^V_i=\lambda_i λiU=λiV=λi
U ∙ x ⃗ = λ x ⃗ = ( Q T ∙ V ∙ Q ) ∙ x ⃗ ⟹ V ∙ ( Q ∙ x ⃗ ) = λ ( Q ∙ x ⃗ ) \bold U\bullet \vec{x}=\lambda \vec{x}=(\bold Q^T\bullet \bold V \bullet \bold Q)\bullet\vec{x}\Longrightarrow\bold V \bullet (\bold Q\bullet\vec{x})=\lambda(\bold Q\bullet\vec{x}) Ux =λx =(QTVQ)x V(Qx )=λ(Qx )
上式说明,左、右极分解所采用的正张量 U 、 V \bold{U}、\bold{V} UV的特征向量可通过同一正交变换一 一对应

  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值