第四章 随机变量的数字特征

4.1 常见分布数学期望与方差

1. X ∼ B ( n , p ) E (X) = np D ( X ) = n p ( 1 − p ) 2. X ∼ P ( λ ) E (X) = λ D ( X ) = λ 3. X ∼ U ( a , b ) E   ( X ) = a + b 2 D ( X ) = ( b − a ) 2 12 4. X ∼ E ( λ ) E (X) = 1 λ D (X) = 1 λ 2 5. X ∼ N ( μ , σ 2 ) E (X) = μ D ( X ) = σ 2 \begin{aligned} 1.&\mathrm{ X\sim B(n,p)} \\ &\text{E (X) = np} \\ &\mathrm D\left(\mathrm X\right)=\mathrm n\mathrm p(1-\mathrm p) \\ 2.&\mathrm{X}\sim\mathrm{P}\left(\lambda\right) \\ &\text{E (X)}=\lambda \\ &D (X) = \lambda \\ 3.&\mathrm{X}\sim\mathrm{U}(\mathrm{a},\mathrm{b}) \\ &\mathrm{E~(X)=\frac{a+b}2} \\ &\mathrm{D}\left(\mathrm{X}\right)=\frac{(\overset{}{\mathrm{b}}-\mathrm{a})^2}{12} \\ 4.&\mathrm{X}\sim\mathrm{E}\left(\lambda\right) \\ &\begin{array}{l}\text{E (X)}=\frac{1}{\lambda}\\\text{D (X)}=\frac{1}{\lambda^2}\end{array} \\ 5.&\mathrm{X}\sim\mathrm{N}\left(\mathrm{\mu},\mathrm{\sigma}^2\right) \\ &\text{E (X) = μ} \\ &\mathrm{D}\left(\mathrm{X}\right)=\sigma^2 \end{aligned} 1.2.3.4.5.XB(n,p)E (X) = npD(X)=np(1p)XP(λ)E (X)=λD(X)=λXU(a,b)E (X)=2a+bD(X)=12(ba)2XE(λ)E (X)=λ1D (X)=λ21XN(μ,σ2)E (X) = μD(X)=σ2

常见分布CDFPMF或PDF期望 ( E ( X ) E(X) E(X))方差 ( D ( X ) D(X) D(X))
二项分布 (Binomial) X ∼ B ( n , p ) X \sim B(n,p) XB(n,p) P ( X ≤ k ) = ∑ i = 0 k ( n i ) p i ( 1 − p ) n − i P(X \leq k) = \sum_{i=0}^{k} \binom{n}{i}p^i(1-p)^{n-i} P(Xk)=i=0k(in)pi(1p)ni P ( X = k ) = ( n k ) p k ( 1 − p ) n − k P(X=k) = \binom{n}{k}p^k(1-p)^{n-k} P(X=k)=(kn)pk(1p)nk n p np np n p ( 1 − p ) np(1-p) np(1p)
泊松分布 (Poisson) X ∼ P ( λ ) X \sim P(\lambda) XP(λ) P ( X ≤ k ) = e − λ ∑ i = 0 k λ i i ! P(X \leq k) = e^{-\lambda} \sum_{i=0}^{k} \frac{\lambda^i}{i!} P(Xk)=eλi=0ki!λi P ( X = k ) = λ k e − λ k ! P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!} P(X=k)=k!λkeλ λ \lambda λ λ \lambda λ
均匀分布 (Uniform) X ∼ U ( a , b ) X \sim U(a,b) XU(a,b) P ( X ≤ x ) = x − a b − a P(X \leq x) = \frac{x - a}{b - a} P(Xx)=baxa, a ≤ x ≤ b a \leq x \leq b axb- a + b 2 \frac{a + b}{2} 2a+b ( b − a ) 2 12 \frac{(b - a)^2}{12} 12(ba)2
指数分布 (Exponential) X ∼ E ( λ ) X \sim E(\lambda) XE(λ) P ( X ≤ x ) = 1 − e − λ x P(X \leq x) = 1 - e^{-\lambda x} P(Xx)=1eλx f ( x ) = λ e − λ x f(x) = \lambda e^{-\lambda x} f(x)=λeλx 1 λ \frac{1}{\lambda} λ1 1 λ 2 \frac{1}{\lambda^2} λ21
正态分布 (Normal) X ∼ N ( μ , σ 2 ) X \sim N(\mu, \sigma^2) XN(μ,σ2) P ( X ≤ x ) = 1 2 [ 1 + erf ( x − μ σ 2 ) ] P(X \leq x) = \frac{1}{2}\left[1 + \text{erf}\left(\frac{x - \mu}{\sigma \sqrt{2}}\right)\right] P(Xx)=21[1+erf(σ2 xμ)] f ( x ) = 1 2 π σ e − 1 2 ( x − μ σ ) 2 f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} f(x)=2π σ1e21(σxμ)2 μ \mu μ σ 2 \sigma^2 σ2
几何分布 (Geometric) P ( X ≤ k ) = 1 − ( 1 − p ) k P(X \leq k) = 1 - (1-p)^k P(Xk)=1(1p)k P ( X = k ) = ( 1 − p ) k − 1 p P(X=k) = (1-p)^{k-1}p P(X=k)=(1p)k1p 1 p \frac{1}{p} p1 1 − p p 2 \frac{1-p}{p^2} p21p

1 − e − λ x 1 - e^{-\lambda x} 1eλx

4.2 期望的性质

一维离散型随机变量的期望

E ( X ) = ∑ i = 1 ∞ x i p i \mathrm{E}(X) = \sum_{i=1}^\infty x_i p_i E(X)=i=1xipi

x i x_i xi 是随机变量 X X X 的可能取值, p i p_i pi 是取这些值的概率。

连续型随机变量函数的期望

E [ g ( X ) ] = ∫ − ∞ + ∞ g ( x ) f ( x )   d x \mathrm{E}[g(X)] = \int_{-\infty}^{+\infty} g(x) f(x) \, dx E[g(X)]=+g(x)f(x)dx

g ( X ) g(X) g(X) X X X 的函数, f ( x ) f(x) f(x) X X X 的概率密度函数。

对于二维随机变量 ( X , Y ) (X, Y) (X,Y),函数的期望为:

E [ g ( X , Y ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y )   d x   d y \mathrm{E}[g(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x,y) f(x,y) \, dx \, dy E[g(X,Y)]=++g(x,y)f(x,y)dxdy

数学期望的性质包括:

  • 线性性质:

E ( a X + b Y ) = a E ( X ) + b E ( Y ) \mathrm{E}(aX + bY) = a \mathrm{E}(X) + b \mathrm{E}(Y) E(aX+bY)=aE(X)+bE(Y)

a a a b b b 是常数。

  • 独立性质:

如果 X X X Y Y Y 是相互独立的随机变量,那么它们的乘积的期望等于各自期望的乘积:

E ( X Y ) = E ( X ) E ( Y ) \mathrm{E}(XY) = \mathrm{E}(X) \mathrm{E}(Y) E(XY)=E(X)E(Y)

4.3 方差的公式和性质

方差的公式

D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 \mathrm{D}(X) = \mathrm{E}(X^2) - [\mathrm{E}(X)]^2 D(X)=E(X2)[E(X)]2

E ( X ) \mathrm{E}(X) E(X) 是随机变量 X X X 的期望值, E ( X 2 ) \mathrm{E}(X^2) E(X2) 是随机变量 X X X 平方的期望值。

方差的性质

  • 常数的方差为零:

D ( C ) = 0 \mathrm{D}(C) = 0 D(C)=0

这里, C C C 是一个常数。

  • 常数乘以随机变量的方差:

D ( C X ) = C 2 D ( X ) \mathrm{D}(CX) = C^2 \mathrm{D}(X) D(CX)=C2D(X)

  • 随机变量加上常数的方差等于随机变量的方差:

D ( X + C ) = D ( X ) \mathrm{D}(X + C) = \mathrm{D}(X) D(X+C)=D(X)

  • 两个随机变量之和或差的方差:

D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 E { ( X − E ( X ) ) ( Y − E ( Y ) ) } \mathrm{D}(X \pm Y) = \mathrm{D}(X) + \mathrm{D}(Y) \pm 2\mathrm{E}\{(\mathrm{X} - \mathrm{E}(X))(\mathrm{Y} - \mathrm{E}(Y))\} D(X±Y)=D(X)+D(Y)±2E{(XE(X))(YE(Y))}

  • 如果随机变量 X X X Y Y Y 相互独立,则它们之和或差的方差是各自方差的和:

D ( X ± Y ) = D ( X ) + D ( Y ) \mathrm{D}(X \pm Y) = \mathrm{D}(X) + \mathrm{D}(Y) D(X±Y)=D(X)+D(Y)

这些性质在计算随机变量方差时非常有用,尤其是在处理随机变量的线性组合时。

4.4 协方差的公式和性质定义

协方差

公式 C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) \begin{array}{l}\mathrm{Cov(X,Y)=E\left\{\left[X-E\left(X\right)\right]\left[Y-E\left(Y\right)\right]\right\}}\\\mathrm{Cov(X,Y)=E\left(XY\right)-E\left(X\right)E\left(Y\right)}\end{array} Cov(X,Y)=E{[XE(X)][YE(Y)]}Cov(X,Y)=E(XY)E(X)E(Y)

性质

C o v ( X , Y ) = C o v ( Y , X ) C o v ( a X , b Y ) = a b C o v ( Y , X ) C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) D ( X ± Y ) = D ( X ) + D ( Y ) ± 2Cov (X,Y ) \begin{aligned} &\mathrm{Cov(X,Y)=Cov(Y,X)} \\ &\mathrm{Cov(aX,bY)=abCov(Y,X)} \\ &\mathrm{Cov(X_1+X_2,Y)=Cov(X_1,Y)}+ \\ &\mathrm{Cov}(\mathrm{X}_{2},\mathrm{Y}) \\ &\left.\mathrm D\left(\mathrm X\pm\mathrm Y\right.\right)=\mathrm D\left(\mathrm X\right)+\mathrm D\left(\mathrm Y\right)\pm \\ &\text{2Cov (X,Y )} \end{aligned} Cov(X,Y)=Cov(Y,X)Cov(aX,bY)=abCov(Y,X)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)D(X±Y)=D(X)+D(Y)±2Cov (X,Y )

协方差衡量两个随机变量联合变动性的统计度量。它的定义和性质如下:

协方差的定义和公式

C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) \begin{aligned} \mathrm{Cov}(X,Y) &= \mathrm{E}\left\{\left[X - \mathrm{E}(X)\right]\left[Y - \mathrm{E}(Y)\right]\right\} \\ \mathrm{Cov}(X,Y) &= \mathrm{E}(XY) - \mathrm{E}(X)\mathrm{E}(Y) \end{aligned} Cov(X,Y)Cov(X,Y)=E{[XE(X)][YE(Y)]}=E(XY)E(X)E(Y)

协方差的性质

  • 对称性:

C o v ( X , Y ) = C o v ( Y , X ) \mathrm{Cov}(X,Y) = \mathrm{Cov}(Y,X) Cov(X,Y)=Cov(Y,X)

  • 缩放不变性:

C o v ( a X , b Y ) = a b C o v ( X , Y ) \mathrm{Cov}(aX,bY) = ab\mathrm{Cov}(X,Y) Cov(aX,bY)=abCov(X,Y)

这里, a a a b b b 是常数。

  • 可加性:

C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) \mathrm{Cov}(X_1 + X_2, Y) = \mathrm{Cov}(X_1, Y) + \mathrm{Cov}(X_2, Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)

  • 方差和协方差的关系:

D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) \mathrm{D}(X \pm Y) = \mathrm{D}(X) + \mathrm{D}(Y) \pm 2\mathrm{Cov}(X,Y) D(X±Y)=D(X)+D(Y)±2Cov(X,Y)

如果随机变量 X X X Y Y Y 相互独立,则它们的协方差为零:

C o v ( X , Y ) = 0 \mathrm{Cov}(X,Y) = 0 Cov(X,Y)=0

协方差可以是正的、负的或零,这分别表示随机变量之间正相关、负相关或不相关。

不相关性的充要条件和相关系数的公式及其性质如下:

不相关性的充要条件

随机变量 X X X Y Y Y 不相关的充要条件可以表述为:

X 与 Y 不相关 ⇔ ρ X Y = 0 ⇔ C o v ( X , Y ) = 0 ⇔ D ( X + Y ) = D ( X ) + D ( Y ) ⇔ E ( X Y ) = E ( X ) E ( Y ) \begin{aligned} &\mathrm{X}\text{与}Y\text{不相关} \Leftrightarrow \rho_{XY} = 0 \Leftrightarrow \mathrm{Cov}(X, Y) = 0 \\ &\Leftrightarrow \mathrm{D}(X + Y) = \mathrm{D}(X) + \mathrm{D}(Y) \\ &\Leftrightarrow \mathrm{E}(XY) = \mathrm{E}(X)\mathrm{E}(Y) \end{aligned} XY不相关ρXY=0Cov(X,Y)=0D(X+Y)=D(X)+D(Y)E(XY)=E(X)E(Y)

这里, ρ X Y \rho_{XY} ρXY X X X Y Y Y 的相关系数, C o v ( X , Y ) \mathrm{Cov}(X, Y) Cov(X,Y) X X X Y Y Y 的协方差。

相关系数

相关系数的公式

相关系数 ρ X Y \rho_{XY} ρXY 定义为:

ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{XY} = \frac{\mathrm{Cov}(X, Y)}{\sqrt{\mathrm{D}(X)\mathrm{D}(Y)}} ρXY=D(X)D(Y) Cov(X,Y)

相关系数的性质

  • ρ X Y = ± 1 \rho_{XY} = \pm1 ρXY=±1 时,存在线性关系:

ρ X Y = ± 1 ⇔ P { Y = a X + b } = 1 \rho_{XY} = \pm1 \Leftrightarrow P\left\{Y = aX + b\right\} = 1 ρXY=±1P{Y=aX+b}=1

这意味着,如果相关系数为 + 1 +1 +1 − 1 -1 1,则 Y Y Y 可以通过 X X X 的线性函数完全预测,并且这种关系是确定性的。

相关系数是度量两个随机变量线性关系强度和方向的一个重要工具。当两个随机变量完全不相关时,它们的相关系数为零。

补充 切比雪夫不等式

P { ∣ X − E ( X ) ∣ ≥ ε } ≤ D ( X ) ε 2 或  P { ∣ X − E ( X ) ∣ < ε } ≥ 1 − D ( X ) ε 2 . \begin{aligned} &\mathrm{P}\left\{|\mathrm{X} - \mathrm{E}(\mathrm{X})| \geq \varepsilon \right\} \leq \frac{\mathrm{D}(\mathrm{X})}{\varepsilon^2} \\ &\text{或} \ \mathrm{P}\left\{|\mathrm{X} - \mathrm{E}(\mathrm{X})| < \varepsilon\right\} \geq 1 - \frac{\mathrm{D}(\mathrm{X})}{\varepsilon^2}. \end{aligned} P{XE(X)ε}ε2D(X) P{XE(X)<ε}1ε2D(X).

  • 28
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值