817自动控制原理-1-开环传递函数与闭环传递函数

一、为什么输入作用下的开环传递函数为什么是G(s)*H(s)

首先,开环传递函数是针对闭环系统而言的,而不是指开环系统的传递函数。
eg.在这里插入图片描述
输入作用下的开环传递函数:G(s)=G1H2H3/(1-G2H1)
输入作用下的误差传递函数:R(s)/E(s)=(1-G2H2)/(1-G2H2+G1G2H3)

二、扰动作用下的传递函数C(s)/N(s)

在这里插入图片描述
扰动作用下的传递函数C(s)/N(s)=[G2(H1-G1)]/(1-G2H2+G1G2H3)
方法1,主要进行化简流程图,比较点右移。
方法2,使用梅森增益公式。

<think>好的,用户让我介绍闭环传递函数的公式。首先,我需要回忆一下闭环传递函数的基本概念。闭环传递函数是控制系统中的一个重要概念,它描述了在反馈作用下系统的输入输出之间的关系。用户可能在学习自动控制原理或者相关课程,需要理解闭环系统的数学模型。 接下来,我需要确定闭环传递函数的一般形式。通常,闭环系统由前向路径反馈路径组成。假设前向传递函数是G(s),反馈传递函数是H(s),那么闭环传递函数的公式应该是G(s)/(1 + G(s)H(s))。不过,我需要确认这个公式是否适用于所有情况,比如单位反馈非单位反馈的情况。如果是单位反馈,即H(s)=1,那么闭环传递函数就是G(s)/(1 + G(s))。而非单位反馈的情况下,则是G(s)/(1 + G(s)H(s))。 然后,用户可能需要具体的例子来帮助理解。比如,假设一个简单的系统,前向传递函数是K/(Ts+1),反馈是H(s)=1,那么闭环传递函数就是[K/(Ts+1)] / [1 + K/(Ts+1)],化简后得到K/(Ts+1 + K)。不过这个例子是否正确?我需要检查一下是否正确应用了闭环传递函数的公式。 另外,用户可能对闭环传递函数的推导过程感兴趣。是否需要解释梅森公式或者通过方块图简化来推导闭环传递函数?考虑到用户的问题比较基础,可能只需要给出公式简要的解释,而不需要深入推导步骤。 还需要注意用户是否有其他需求,比如闭环传递函数的特性,如稳定性、稳态误差等,但用户的问题明确要求公式,所以可能不需要扩展这些内容。不过,适当的补充说明可能有助于用户理解公式的意义。 另外,用户之前的提问是关于惯性环节的阶跃响应,现在转向闭环传递函数,可能是在学习控制系统的不同部分。需要确保回答之前的解释在术语符号上保持一致,比如使用相同的变量符号,如前向传递函数G(s),反馈H(s)等。 最后,需要检查是否有常见的误区需要提醒用户。例如,闭环传递函数的分母1 + G(s)H(s)是系统的特征多项式,其根决定了系统的稳定性。这部分是否要提及?可能简要提到,但主要集中于公式本身。 总结步骤: 1. 定义闭环传递函数,说明其在反馈系统中的作用。 2. 给出闭环传递函数的标准公式,区分单位反馈非单位反馈情况。 3. 提供具体的例子,验证公式的正确性。 4. 解释公式中各部分的含义,如前向通道反馈通道的传递函数。 5. 可能提到特征方程的重要性,但不过多深入。 6. 确保回答结构清晰,逐步引导用户理解公式的构成应用。</think>--- ### **闭环传递函数公式** 闭环传递函数用于描述**反馈控制系统**中输入输出之间的数学关系,其核心公式如下: --- #### **1. 闭环传递函数的标准形式** 对于典型反馈系统(如图): - **前向通道传递函数**:$G(s)$ - **反馈通道传递函数**:$H(s)$ 闭环传递函数为: $$ \Phi(s) = \frac{Y(s)}{R(s)} = \frac{G(s)}{1 + G(s)H(s)} $$ 其中: - $Y(s)$:系统输出; - $R(s)$:系统输入; - $1 + G(s)H(s)$:闭环系统的特征多项式,决定系统稳定性。 --- #### **2. 公式推导(基于负反馈)** 1. **开环传递函数**:$G(s)H(s)$; 2. **闭环关系**:输出 $Y(s) = G(s) \cdot [R(s) - H(s)Y(s)]$; 3. 整理得: $$ Y(s) = \frac{G(s)}{1 + G(s)H(s)} R(s) $$ 即闭环传递函数为 $\frac{G(s)}{1 + G(s)H(s)}$。 --- #### **3. 特例:单位反馈系统** 若反馈通道为直接测量($H(s) = 1$),则公式简化为: $$ \Phi(s) = \frac{G(s)}{1 + G(s)} $$ --- #### **4. 示例** 假设前向通道为惯性环节 $G(s) = \frac{K}{Ts + 1}$,反馈 $H(s) = 1$,则闭环传递函数为: $$ \Phi(s) = \frac{\frac{K}{Ts + 1}}{1 + \frac{K}{Ts + 1}} = \frac{K}{Ts + 1 + K} $$ --- #### **5. 物理意义** - **分母 $1 + G(s)H(s)$**:体现反馈对系统的调节作用,增强稳定性; - **增益变化**:闭环系统可能降低原开环增益(如单位反馈时稳态增益为 $\frac{G(0)}{1 + G(0)}$)。 --- #### **6. 应用** 闭环传递函数用于: 1. 分析系统稳定性(通过特征方程根的位置); 2. 计算动态性能(如超调量、调节时间); 3. 设计控制器(如PID参数整定)。 --- ### **示意图** ```plaintext R(s) + E(s) Y(s) 输入 → (⊕) → [G(s)] → ... → 输出 ↑ │ └──[H(s)]───┘ ``` **注**:闭环传递函数是控制系统设计的核心工具,通过调整 $G(s)$ $H(s)$ 可实现期望性能。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值