[笔记]PN结二极管(1)

PN结二极管(1)

1、PN结二极管基本结构与工艺

PN结

  • PN结:p型半导体与n半导体紧密接触形成的冶金结。

  • P N PN PN结二级管:利用PN结实现单 向导电的两端功能器件。

  • PN结内部结构与载流子运动行为
    在这里插入图片描述

​ P型和N型半导体的多子在接触后分别向对方扩散,分别留下固定的、带负电荷的电离受主和带正电荷的电离施主。

​ 图中所示半导体内部两个净正电荷与净负电荷的区域被称为空间电荷区。该区域形成从正电荷区到负电荷区的内建电场,阻碍多子继续扩散。

​ 在内建电场的作用下,电子和空穴被扫出空间电荷区,因此空间电荷区中不 存在可动电荷,所以空间电荷区也被称为耗尽区(耗尽层)

​ 此时耗尽区保持电中性,电荷平衡, 无净电流,称为热平衡pn结

  • 制造二极管的几种工艺:合金法、扩散法、注入法等。

  • IC中的PN结:平面二极管工艺。

在这里插入图片描述

  • 突变结:冶金结界面掺杂浓度突变的PN结

在这里插入图片描述

  • 缓变结:冶金结界面掺杂浓度缓变的PN结

在这里插入图片描述

2、PN结耗尽区理论

  • PN结能带结构的形成

在这里插入图片描述

PN结内建电势

在这里插入图片描述

​ 电子从n区导带向p型区导带(空穴从p区价带到n区价带)运动时存在一 个势垒,被称为内建电势,定义 V b i V_{bi} Vbi。维持了n区多子和p区少子以及p区多子 和n区少子的动态平衡。

​ 内建电势存在于空间电荷区,维持动态平衡,不产生净电流,无法通过外接伏特表测量。

  • 内建电势公式求解

​ 本征载流子费米能级随Ec和Ev变化,而内部平衡(本征载流子和非本征载流子之和)载流子费米能级保持恒定。

​ n区中
V b i = ∣ ϕ F n ∣ + ∣ ϕ F p ∣ n 0 = N c exp ⁡ [ − ( E c − E F ) k T ] = n i exp ⁡ [ E F − E F i k T ] e ϕ F n = E F i − E F n 0 = n i exp ⁡ [ − ( e φ F n ) k T ] n 0 = N d ϕ F n = − k T e ln ⁡ ( N d n i ) V_{bi} = |\phi_{Fn}| + |\phi_{Fp}| \\ n_0 = N_c \exp\left[\frac{-(E_c - E_F)}{kT}\right]= n_i \exp\left[\frac{E_F - E_{Fi}}{kT}\right] \\ e \phi_{Fn} = E_{Fi} - E_F \\ n_0 = n_i \exp\left[\frac{-(e \varphi_{Fn})}{kT}\right] \quad n_0 = N_d \\ \phi_{Fn} = -\frac{kT}{e} \ln\left(\frac{N_d}{n_i}\right) Vbi=ϕFn+ϕFpn0=Ncexp[kT(EcEF)]=niexp[kTEFEFi]eϕFn=EFiEFn0=niexp[kT(eφFn)]n0=NdϕFn=ekTln(niNd)
​ 同理,p区中
p 0 = N a = n i exp ⁡ [ E F i − E F k T ] e ϕ F p = E F i − E F ϕ F p = k T e ln ⁡ ( N a n i ) p_0 = N_a = n_i \exp\left[\frac{E_{Fi} - E_F}{kT}\right] \\ e \phi_{Fp} = E_{Fi} - E_F \\ \phi_{Fp} = \frac{kT}{e} \ln\left(\frac{N_a}{n_i}\right)\\ p0=Na=niexp[kTEFiEF]eϕFp=EFiEFϕFp=ekTln(niNa)
​ 综合,则内建电势公式为
V b i = k T e ln ⁡ ( N a N d n i 2 ) = V t ln ⁡ ( N a N d n i 2 ) V_{bi} = \frac{kT}{e} \ln\left(\frac{N_a N_d}{n_i^2}\right) = V_t \ln\left(\frac{N_a N_d}{n_i^2}\right) Vbi=ekTln(ni2NaNd)=Vtln(ni2NaNd)
​ 其中Vt被称为热电压,或费米势,约等于0.026。Na,Nd为净掺杂浓度.

  • 耗尽区电场强度

​ 耗尽区电场强度也是内建电场强度。
在这里插入图片描述

​ 耗尽区正负电荷分离,遵循电荷泊松方程:
d 2 ϕ ( x ) d x 2 = − ρ ( x ) ε s = − d E ( x ) d x \frac{d^2 \phi(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon_s} = -\frac{dE(x)}{dx} dx2d2ϕ(x)=εsρ(x)=dxdE(x)
​ 因为空间电荷区体电荷密度为
ρ ( x ) = − e N a , − x p < x < 0 ρ ( x ) = e N d , 0 < x < x n \rho(x) = -e N_a, \quad -x_p < x < 0 \\ \rho(x) = e N_d, \quad 0 < x < x_n ρ(x)=eNa,xp<x<0ρ(x)=eNd,0<x<xn
​ 所以p区
E ( x ) = ∫ ρ ( x ) ε s   d x = − ∫ e N a ε s   d x = − e N a ε s x + C 1 E(x) = \int \frac{\rho(x)}{\varepsilon_s} \, dx = -\int \frac{e N_a}{\varepsilon_s} \, dx = -\frac{e N_a}{\varepsilon_s} x + C_1 E(x)=εsρ(x)dx=εseNadx=εseNax+C1
​ 又热平衡时无电流流过,所以, x < − x p x<-x_p x<xp的电中性p区内的电场可认为为零;又因为电场连续, 设 x = − x p x=-x_p x=xp E = 0 E=0 E=0,则耗尽区p区内:
E ( x ) = − e N a ε s ( x + x p ) , − x p ≤ x ≤ 0 E(x) = -\frac{e N_a}{\varepsilon_s} (x + x_p), \quad -x_p \leq x \leq 0 \\ E(x)=εseNa(x+xp),xpx0
​ 同理,耗尽区n区内:
E ( x ) = ∫ e N d ε s   d x = e N d ε s x + C 2 E ( x ) = − e N d ε s ( x n − x ) , 0 ≤ x ≤ x n E(x) = \int \frac{e N_d}{\varepsilon_s} \, dx = \frac{e N_d}{\varepsilon_s} x + C_2 \\ E(x) = -\frac{e N_d}{\varepsilon_s} (x_n - x), \quad 0 \leq x \leq x_n E(x)=εseNddx=εseNdx+C2E(x)=εseNd(xnx),0xxn
​ 因为电场连续,联立上述两式,在冶金结处(x=0):
N a x p = N d x n N_ax_p=N_dx_n Naxp=Ndxn
在这里插入图片描述

​ 最大电场
E max = − e N d x n ε s = − e N a x p ε s , ( x = 0 ) E_{\text{max}} = -\frac{e N_d x_n}{\varepsilon_s} = -\frac{e N_a x_p}{\varepsilon_s}, \quad (x = 0) Emax=εseNdxn=ε

### PN电容概述 PN电容是一种由PN形成的电容器构,其特性主要取决于PN的空间电荷区以及外加电压的影响。这种电容可以分为两种类型:**势垒电容**和**扩散电容**。 #### 势垒电容计算公式 势垒电容是由PN空间电荷区的变化引起的。当外加反向偏置电压增加时,空间电荷区宽度会增大,从而导致势垒电容减小。势垒电容的表达式通常为: ```python C_B = ε / W(V) ``` 其中 \( C_B \) 是势垒电容[^1],\( \varepsilon \) 表示材料的介电常数,而 \( W(V) \) 是随外加电压变化的空间电荷区宽度[^3]。 对于理想情况下的硅PN,势垒电容可以用以下近似公式表示: \[ C_B = \sqrt{\frac{2 q N_A D_n}{V}} \] 这里 \( q \) 是电子电荷量,\( N_A \) 和 \( D_n \) 分别代表掺杂浓度和耗尽层宽度参数,\( V \) 为外加反向电压。 #### 扩散电容工作原理 扩散电容则是在正向偏压下由于多数载流子注入效应引起的一种动态电容形式。它反映了存储在PN中的多余少数载流子数量如何随着外部信号发生变化。具体而言,扩散电容可以通过微分关系定义如下: \[ C_D = \frac{dQ}{dV} \] 这里的 \( Q \) 表示因载流子注入而导致的有效电荷量改变,而 \( V \) 则指代施加于PN上的直流偏置电压加上任何可能存在的高频成分波动总合值[^2]。 #### 半导体器件应用背景 在实际半导体器件设计中,理解并合理利用这两种类型的电容非常重要。例如,在高速开关电路里希望尽可能降低寄生电容影响;而在某些模拟集成电路部分又可能会故意引入特定大小范围内的电容来实现滤波等功能需求。 ```python def pn_junction_capacitance(voltage, epsilon=1e-10, na=1e16, dn=1e-4): """Calculate the barrier capacitance of a silicon PN junction.""" cb = (epsilon * np.sqrt(2 * abs(q * na))) / ((dn * voltage)**0.5) return cb ``` 上述Python函数展示了基于给定公式的简单势垒电容数值估算方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值