PN结二极管(1)
1、PN结二极管基本结构与工艺
PN结
-
PN结:p型半导体与n半导体紧密接触形成的冶金结。
-
P N PN PN结二级管:利用PN结实现单 向导电的两端功能器件。
-
PN结内部结构与载流子运动行为
P型和N型半导体的多子在接触后分别向对方扩散,分别留下固定的、带负电荷的电离受主和带正电荷的电离施主。
图中所示半导体内部两个净正电荷与净负电荷的区域被称为空间电荷区。该区域形成从正电荷区到负电荷区的内建电场,阻碍多子继续扩散。
在内建电场的作用下,电子和空穴被扫出空间电荷区,因此空间电荷区中不 存在可动电荷,所以空间电荷区也被称为耗尽区(耗尽层)
此时耗尽区保持电中性,电荷平衡, 无净电流,称为热平衡pn结。
-
制造二极管的几种工艺:合金法、扩散法、注入法等。
-
IC中的PN结:平面二极管工艺。
- 突变结:冶金结界面掺杂浓度突变的PN结
- 缓变结:冶金结界面掺杂浓度缓变的PN结
2、PN结耗尽区理论
- PN结能带结构的形成
PN结内建电势
电子从n区导带向p型区导带(空穴从p区价带到n区价带)运动时存在一 个势垒,被称为内建电势,定义 V b i V_{bi} Vbi。维持了n区多子和p区少子以及p区多子 和n区少子的动态平衡。
内建电势存在于空间电荷区,维持动态平衡,不产生净电流,无法通过外接伏特表测量。
- 内建电势公式求解
本征载流子费米能级随Ec和Ev变化,而内部平衡(本征载流子和非本征载流子之和)载流子费米能级保持恒定。
n区中
V b i = ∣ ϕ F n ∣ + ∣ ϕ F p ∣ n 0 = N c exp [ − ( E c − E F ) k T ] = n i exp [ E F − E F i k T ] e ϕ F n = E F i − E F n 0 = n i exp [ − ( e φ F n ) k T ] n 0 = N d ϕ F n = − k T e ln ( N d n i ) V_{bi} = |\phi_{Fn}| + |\phi_{Fp}| \\ n_0 = N_c \exp\left[\frac{-(E_c - E_F)}{kT}\right]= n_i \exp\left[\frac{E_F - E_{Fi}}{kT}\right] \\ e \phi_{Fn} = E_{Fi} - E_F \\ n_0 = n_i \exp\left[\frac{-(e \varphi_{Fn})}{kT}\right] \quad n_0 = N_d \\ \phi_{Fn} = -\frac{kT}{e} \ln\left(\frac{N_d}{n_i}\right) Vbi=∣ϕFn∣+∣ϕFp∣n0=Ncexp[kT−(Ec−EF)]=niexp[kTEF−EFi]eϕFn=EFi−EFn0=niexp[kT−(eφFn)]n0=NdϕFn=−ekTln(niNd)
同理,p区中
p 0 = N a = n i exp [ E F i − E F k T ] e ϕ F p = E F i − E F ϕ F p = k T e ln ( N a n i ) p_0 = N_a = n_i \exp\left[\frac{E_{Fi} - E_F}{kT}\right] \\ e \phi_{Fp} = E_{Fi} - E_F \\ \phi_{Fp} = \frac{kT}{e} \ln\left(\frac{N_a}{n_i}\right)\\ p0=Na=niexp[kTEFi−EF]eϕFp=EFi−EFϕFp=ekTln(niNa)
综合,则内建电势公式为
V b i = k T e ln ( N a N d n i 2 ) = V t ln ( N a N d n i 2 ) V_{bi} = \frac{kT}{e} \ln\left(\frac{N_a N_d}{n_i^2}\right) = V_t \ln\left(\frac{N_a N_d}{n_i^2}\right) Vbi=ekTln(ni2NaNd)=Vtln(ni2NaNd)
其中Vt被称为热电压,或费米势,约等于0.026。Na,Nd为净掺杂浓度.
- 耗尽区电场强度
耗尽区电场强度也是内建电场强度。
耗尽区正负电荷分离,遵循电荷泊松方程:
d 2 ϕ ( x ) d x 2 = − ρ ( x ) ε s = − d E ( x ) d x \frac{d^2 \phi(x)}{dx^2} = -\frac{\rho(x)}{\varepsilon_s} = -\frac{dE(x)}{dx} dx2d2ϕ(x)=−εsρ(x)=−dxdE(x)
因为空间电荷区体电荷密度为
ρ ( x ) = − e N a , − x p < x < 0 ρ ( x ) = e N d , 0 < x < x n \rho(x) = -e N_a, \quad -x_p < x < 0 \\ \rho(x) = e N_d, \quad 0 < x < x_n ρ(x)=−eNa,−xp<x<0ρ(x)=eNd,0<x<xn
所以p区
E ( x ) = ∫ ρ ( x ) ε s d x = − ∫ e N a ε s d x = − e N a ε s x + C 1 E(x) = \int \frac{\rho(x)}{\varepsilon_s} \, dx = -\int \frac{e N_a}{\varepsilon_s} \, dx = -\frac{e N_a}{\varepsilon_s} x + C_1 E(x)=∫εsρ(x)dx=−∫εseNadx=−εseNax+C1
又热平衡时无电流流过,所以, x < − x p x<-x_p x<−xp的电中性p区内的电场可认为为零;又因为电场连续, 设 x = − x p x=-x_p x=−xp处 E = 0 E=0 E=0,则耗尽区p区内:
E ( x ) = − e N a ε s ( x + x p ) , − x p ≤ x ≤ 0 E(x) = -\frac{e N_a}{\varepsilon_s} (x + x_p), \quad -x_p \leq x \leq 0 \\ E(x)=−εseNa(x+xp),−xp≤x≤0
同理,耗尽区n区内:
E ( x ) = ∫ e N d ε s d x = e N d ε s x + C 2 E ( x ) = − e N d ε s ( x n − x ) , 0 ≤ x ≤ x n E(x) = \int \frac{e N_d}{\varepsilon_s} \, dx = \frac{e N_d}{\varepsilon_s} x + C_2 \\ E(x) = -\frac{e N_d}{\varepsilon_s} (x_n - x), \quad 0 \leq x \leq x_n E(x)=∫εseNddx=εseNdx+C2E(x)=−εseNd(xn−x),0≤x≤xn
因为电场连续,联立上述两式,在冶金结处(x=0):
N a x p = N d x n N_ax_p=N_dx_n Naxp=Ndxn
最大电场
E max = − e N d x n ε s = − e N a x p ε s , ( x = 0 ) E_{\text{max}} = -\frac{e N_d x_n}{\varepsilon_s} = -\frac{e N_a x_p}{\varepsilon_s}, \quad (x = 0) Emax=−εseNdxn=−ε