[笔记]PN结二极管(2)

4、结击穿

​ PN结高压反偏工作时,电流突然急剧增 大的现象被称为结击穿;此时的电压称为击穿电压(VBD)。主要有热不稳定性、隧道(齐纳)击穿和雪崩击穿三种机制。

热不稳定性

​ PN结较高电压反偏工作时,反向电流增 大导致结温的增加,反过来大幅增加反向电流,由此形成正反馈(微分负电阻),进一步放大反向电流,形成热击穿。

​ 热击穿主要发生在带隙比较窄(例如Ge)的功率器件中,需要外接限流电阻来限制热击穿的形成。

在这里插入图片描述

温度对反向漏电流的影响: 随着温度的升高,反向漏电流 JR 显著增加。这是由于高温下热激发产生的载流子浓度增加所致。

击穿电压的变化: 图中有一个标记为 VC的电压值,代表了击穿电压。曲线在接近 VC时电流急剧上升,说明超过 VC 时器件进入了击穿状态。可以推测,在更高温度下,击穿电压可能会有所降低。

不同温度下的功率一定线: 图中标注了“功率一定”区域,这表明在该区域,功率保持恒定。在不同的温度下,功率一定的曲线呈现出不同的倾斜程度。这反映了在高温下,器件需要通过降低电流密度来保持恒定的功耗,否则温度升高会导致功耗增加,进而影响器件的可靠性。

电流密度的恒定区域: 图中还标记了“ J0 恒定”区域,这表明在某些特定温度范围内和电压条件下,电流密度可能保持相对恒定。这通常是由于温度的变化幅度较小时,器件的特定工作点上的电流变化不大。

漏电流与电压的关系: 随着反向电压的增加,反向漏电流也逐渐增加,这种关系通常是半导体器件在反偏条件下的典型表现。在高电压和高温度条件下,这种增加的趋势更为明显。

齐纳(隧道)击穿

  • 量子隧穿原理

​ 经典理论中载流子完全被能量势阱限制; 但在量子理论中,载流子波函数不会完全被能量势阱限制住,有一定几率进入并穿透势垒形成隧穿。

在这里插入图片描述

​ 当电子在偏压下产生量子隧穿的必要条件为:隧穿一侧存在一定概率电子占据;另外一侧,和占据一侧的相同能级上未被占据;被隧穿的能量势垒宽度足够窄,高度较低,具有有限的隧穿几率;隧穿过程满足动量守恒。

T t = ∣ ψ B ∣ 2 ∣ ψ A ∣ 2 [ 1 + U 0 2 sinh ⁡ 2 ( k ∣ W ∣ ) 4 E ( U 0 − E ) ] − 3 ≈ 16 E ( U 0 − E ) U 0 2 exp ⁡ ( − 2 [ m ∗ ( U 0 − E ) ℏ 1 2 ] W ) T_t = \frac{\left|\psi_B\right|^2}{\left|\psi_A\right|^2} \left[ 1 + \frac{U_0^2 \sinh^2\left(k|W|\right)}{4 E (U_0 - E)} \right]^{-3} \approx 16 \frac{E (U_0 - E)}{U_0^2} \exp\left(-2[\frac{m^* (U_0 - E) }{\hbar}^{\frac{1}{2}}]W\right)\\ Tt=ψA2ψB2[1+4E(U0E)U02sinh2(kW)]316U02E(U0E)exp(2[m(U0E)21]W)

​ 将隧穿几率和A区载流子分布状态(FA)、 数量(NA)及B区的载流子允许分布状态 (FB) 、数量(NB)相乘并积分可得穿过该势垒的隧穿电流密度

J t = q m ∗ 2 π 2 ℏ 3 ∫ F A N A T t ( 1 − F B ) N B d E J_t = \frac{q m^*}{2 \pi^2 \hbar^3} \int F_A N_A T_t (1 - F_B) N_B dE Jt=2π23qmFANATt(1FB)NBdE

  • PN结齐纳(隧道)击穿

​ 重掺杂pn结反偏或普通pn结施加足够大偏压时由于能带大幅弯曲,形成导带与价带间的较薄能量势垒隔离,容易出现载流子通过带隙的直接隧穿现象。

  • 齐纳击穿中的隧穿电流

​ 将隧穿势垒近似为三角形势垒,考虑导带、 价带的电子占据与未占据几率,运用上述一般理论公式,可计算出隧穿电流。

在这里插入图片描述

​ 依据上述公式,按照三角形势垒(势垒宽度 W,高度Eg)来简化计算隧穿几率
T t ≈ exp ⁡ ( − 4 2 m ∗ E g 3 / 2 3 q E ℏ ) J t = 2 m ∗ q 3 E V R 4 π 2 ℏ 2 E g exp ⁡ ( − 4 2 m ∗ E g 3 / 2 3 q E ℏ ) E ≈ − ( V b i + V R ) W T_t \approx \exp\left(-\frac{4 \sqrt{2m^*} E_g^{3/2}}{3 q E \hbar}\right)\\ J_t = \frac{\sqrt{2m^*} q^3 E V_R}{4 \pi^2 \hbar^2\sqrt{E_g}} \exp\left(-\frac{4 \sqrt{2m^*} E_g^{3/2}}{3 q E \hbar}\right) \\ E \approx \frac{-(V_{bi} + V_R)}{W} Ttexp(3qE42m Eg3/2)Jt=4π22Eg 2m q3EVRexp(3qE42m Eg3/2)EW(Vbi+VR)
​ 隧穿电流和带隙宽度、反偏电压、耗尽区宽度有较大关系。

​ PN结中p区、n区重掺杂导致耗尽区三角形势垒变薄,极易形成齐纳击穿。掺杂浓度对隧穿电流有重要影响。

​ 一般的,PN结二极管中击穿电压小于4Eg/q时为齐纳击穿,为负的温度系数(击 穿电压随温度增加而减少);而大于6Eg/q 时为雪崩击穿,为正温度系数(击穿电压 随温度增加而增大)。常以此随温度变化的实验结果来判断其内部的击穿机制。

雪崩击穿

​ PN结中当电子和空穴穿越空间电荷区时, 由于电场作用,能量会增加;当能量增到一定程度就会与耗尽区原子内的电子发生碰撞, 产生新的电子-空穴对;新的电子-空穴对又会撞击其它原子的电子,于是产生雪崩效应; 此时导致的电流突然急剧增大的结击穿称为雪崩击穿。

在这里插入图片描述

​ 雪崩击穿是PN结二极管的主要击穿机制;它决定了多数二极管反向偏压、双极晶体管集电极电压、MOS与MES晶体管漏电压的上限。

​ 一般PN结雪崩击穿求解

在这里插入图片描述

​ 假设由电子少子在x=0处扩散注入的电流为 I n 0 I_{n0} In0,经过耗尽区电场放大后,在耗尽区宽度为W处的电流为
I n ( W ) = M n I n 0 I_n(W)=M_nI_{n0} In(W)=MnIn0
​ Mn-倍增因子

​ 空穴电流同样规律,方向与之相反。αn和αp分别是电子和空穴的电离率,即单位长度下通过碰撞产生的电子和空穴数量.

d I n ( x ) = I n ( x ) α n   d x + I p ( x ) α p   d x I = I n ( x ) + I p ( x ) d I n ( x ) d x + ( α p − α n ) I n ( x ) = α p I α n = α p = α ∫ 0 W α   d x = M n I n ( 0 ) − I n ( W ) I M n I n 0 ≈ I 且 I n ( 0 ) = I n 0 1 − 1 M n = ∫ 0 W α   d x \begin{align*} dI_n(x) &= I_n(x) \alpha_n \, dx + I_p(x) \alpha_p \, dx \\ I &= I_n(x) + I_p(x) \\ \frac{dI_n(x)}{dx} + (\alpha_p - \alpha_n) I_n(x) &= \alpha_p I \\ \alpha_n &= \alpha_p = \alpha \\ \int_0^W \alpha \, dx &= \frac{M_n I_n(0) - I_n(W)}{I}\\ M_n I_{n0} &\approx I \quad \text{且} \quad I_n(0) = I_{n0} \\ 1 - \frac{1}{M_n} &= \int_0^W \alpha \, dx \end{align*} dIn(x)IdxdIn(x)+(αpαn)In(x)αn0WαdxMnIn01Mn1=In(x)αndx+Ip(x)αpdx=In(x)+Ip(x)=αpI=αp=α=IMnIn(0)In(W)IIn(0)=In0=0Wαdx

定义倍增因子Mn达到无穷大时为雪崩击穿,则发生雪崩击穿的条件为
∫ 0 W α   d x = 1 \int_0^W \alpha \, dx = 1 0Wαdx=1
​ α是电场的函数,不容易直接求 出,因而定义此时的电场为临界电场,作为雪崩击穿发生的判据。

  • 单边突变结雪崩击穿求解

​ 若p+n单边突变结,则耗尽区最大电场
E max = e N d x n ε s E_{\text{max}} = \frac{e N_d x_n}{\varepsilon_s} Emax=εseNdxn
​ 此时,又耗尽区宽度为
x n ≈ ( 2 ε s V R e ⋅ 1 N d ) 1 / 2 ≈ W D x_n \approx \left( \frac{2 \varepsilon_s V_R}{e} \cdot \frac{1}{N_d} \right)^{1/2} \approx W_D xn(e2εsVRNd1)1/2WD
​ 若定义此时的Emax为临界电场、反偏电压VBD为击穿电压,则通过变换得到
V BD = ε s E max 2 2 e N d = ε s E max 2 2 e N B = E max W D 2 V_{\text{BD}} = \frac{\varepsilon_s E_{\text{max}}^2}{2 e N_d} = \frac{\varepsilon_s E_{\text{max}}^2}{2 e N_B} = \frac{E_{\text{max}} W_D}{2} VBD=2eNdεsEmax2=2eNBεsEmax2=2EmaxWD
​ NB定义为低浓度掺杂一 边的浓度。

​ VBD近似与临界电场的平方成正比,NB成反比;也可 认为是最大电场强度与耗尽区宽度乘积的一半。

在这里插入图片描述

  • 线性缓变结雪崩击穿求解

V BD = 2 E m W D m 3 = 4 E m 3 / 2 3 ( 2 ε s q a ) 1 / 2 V_{\text{BD}} = \frac{2 E_m W_{Dm}}{3} = \frac{4 E_m^{3/2}}{3} \left( \frac{2 \varepsilon_s}{q a} \right)^{1/2} VBD=32EmWDm=34Em3/2(qa2εs)1/2

在这里插入图片描述

​ 缓变节中最大电场较小且击穿电压与之关系较弱,所以同等掺杂下击穿电压数值更小, 更容易击穿。

  • 单边突变结和线性缓变结的实用通用公式

V BD ≈ 60 ( E g 1.1   eV ) 3 / 2 ( N B 1 0 16   cm − 3 ) − 3 / 4   V V BD ≈ 60 ( E g 1.1   eV ) 6 / 5 ( a 3 × 1 0 20   cm − 3 ) − 2 / 3   V V_{\text{BD}} \approx 60 \left( \frac{E_g}{1.1 \, \text{eV}} \right)^{3/2} \left( \frac{N_B}{10^{16} \, \text{cm}^{-3}} \right)^{-3/4} \, \text{V} \\ V_{\text{BD}} \approx 60 \left( \frac{E_g}{1.1 \, \text{eV}} \right)^{6/5} \left( \frac{a}{3 \times 10^{20} \, \text{cm}^{-3}} \right)^{-2/3} \, \text{V} VBD60(1.1eVEg)3/2(1016cm3NB)3/4VVBD60(1.1eVEg)6/5(3×1020cm3a)2/3V

  • 雪崩击穿一些实际问题

1:雪崩击穿需要用到带间激发,同样的掺杂下, 带隙宽的击穿电压更大。

​ 临界电场只是临时参数,需要较大距离的充分加速才成立(电场距离乘积大于带隙);短距离高电场并不成立,例如MOS晶体管的表面积累层

2:实际扩散PN结中一边为线性缓变掺杂、 一边为恒定固定掺杂,其击穿电压介于单 纯突变结与线性缓变节两者之间

在这里插入图片描述

3:前面推导都是基于半导体比较厚,能提供雪崩 击穿时所需的最大耗尽层宽度(WDm);若半导 体实际W小于WDm,器件将在击穿前穿通,形成 从一端到另外一端的直接大电流造成永久性击穿。

在实际的p±p-n+或p±n-n+的三明治结构中,

在这里插入图片描述

4:前面都是室温,如果温度增加,导致穿过耗尽区的载流子面临更多的晶格振动, 损失部分能量,因而导致雪崩击穿效应削弱,击穿电压增加。

  • 边缘效应

​ 前面都是考虑平面结构,如果考虑器件结构的空间曲率,则会导致耗尽区变窄, 电场增强,雪崩效应增加,击穿电压降低。

在这里插入图片描述

​ 此外,MOS晶体管中栅控二极管效应, 不同栅偏压改变半导体表面(PN结的边缘) 载流子状态,极大影响PN结的击穿状况:

PN结击穿

​ 雪崩击穿
​ 击穿电压 B V > 6 E g e BV>\frac{6E_g}{e} BV>e6Eg,对 S i : B V > 8 V Si:BV>8V SiBV>8V温度系数;
​ 温度升高,晶格振动强度增强,载流子与晶格发生碰撞的概率增大平均自由程下降,为在较短的自由程中积累到足够发生碰撞电离的能量,要求提高反偏电压的绝对值,击穿电压增大。

​ 条件:1、内建电势足够大 2、势垒区足够宽

​ 齐纳击穿**(重掺杂)
​ 击穿电压 B V < 4 E g e BV<\frac{4E_g}{e} BV<e4Eg,对Si:BV<5V,温度系数;
​ 温度升高导致禁带宽度Eg减小势垒深度L减小,更易发生隧穿,因此隧道击穿具有负温度系数。

​影响平面工艺PN结击穿电压

轻掺杂一侧掺杂浓度NB:降低轻掺杂一侧掺杂浓度NB是提升击穿电压主要途径;

​结深xj:增加 p n pn pn结结深xj降低球面结对击穿电压影响;

​外延层厚度:增加外延层厚度可提升击穿电压;

​降低表面电荷(钝化)

5、交流小信号与瞬态开关特性

扩散电阻

​ 小信号特性是PN结二极管用于线性放大器等电路时,叠加在直流电流和电压的交 流信号(一般为正弦信号)特性。

​ 已知二极管直流特性
I = I s [ exp ⁡ ( e V a k T ) − 1 ] I = I_s \left[ \exp \left( \frac{e V_a}{k T} \right) - 1 \right] I=Is[exp(kTeVa)1]
​ 在其上叠加交流小信号(幅值小)

在这里插入图片描述

​ 其交流信号中电流与电压比值称为增量电导
g d = d I D d V a ∣ V a = V 0 g_d = \left. \frac{dI_D}{dV_a} \right|_{V_a = V_0} gd=dVadID Va=V0
​ 其倒数被称为增量电阻
r d = d V a d I D ∣ I D = I D Q r_d = \left. \frac{dV_a}{dI_D} \right|_{I_D = I_{DQ}} rd=dIDdVa ID=IDQ
​ IDQ被称为直流静态 电流,为此时的直流工作点。

​ 当信号足够小时,认为和直流电导相同;代入直流电流-电压公式,并忽略 (-1)项,则,
g d = d I D d V a ∣ V a = V 0 = ( e k T ) I s [ exp ⁡ ( e V 0 k T ) − 1 ] ≈ I D Q V t g_d = \left. \frac{dI_D}{dV_a} \right|_{V_a = V_0} = \left( \frac{e}{kT} \right) I_s \left[ \exp \left( \frac{e V_0}{kT} \right) - 1 \right] \approx \frac{I_{DQ}}{V_t} gd=dVadID Va=V0=(kTe)Is[exp(kTeV0)1]VtIDQ
​ 所以
r d = V t I D Q r_d = \frac{V_t}{I_{DQ}} rd=IDQVt
​ 此时增量电阻被称为扩散电阻;与直流静态电流成反比;与直流I-V曲线斜率 成反比。

​ 前面势垒电容是反偏电压的函数,正偏时另外一类电容对PN结导纳起到重要作用,其小信号导纳(阻抗)由少子扩散电流推导而来。

扩散电容

​ 在直流偏压上叠加交流正弦信号,则
V a = V d c + v ^ sin ⁡ ω t V_a = V_{dc} + \hat{v} \sin \omega t Va=Vdc+v^sinωt

在这里插入图片描述

​ 正弦信号中,当t=0即交流信号为零时
V a = V d c + v ^ sin ⁡ ω t V_a = V_{dc} + \hat{v} \sin \omega t Va=Vdc+v^sinωt
​ •t=t1时,少子(空穴)注入增加,电流增大;

​ •t=t2时,少子(空穴)注入减少,电流减少;

​ •若交流信号周期大于少子扩散时间,则少子在 耗尽区/n区边缘(这里是x=0)形成与距离成一 定函数的稳定分布;

​ •少子(电子)在耗尽区/p区边缘存在同样规律。

​ n区空穴和p区电子产生充放电现象, 形成扩散电容;其物理机制与势垒电 容有很大不同,正偏时数值大许多

  • 小信号导纳

​ 小信号求解边界条件
p n ( 0 ) = p n 0 exp ⁡ ( e V a k T ) , V a = V 0 + v 1 ( t ) , (直流静态偏置电压 交流信号) p n ( x = 0 ) = p n 0 exp ⁡ ( e ( V 0 + v 1 ( t ) ) k T ) = p n ( 0 , t ) , p n ( 0 , t ) = p d c exp ⁡ ( e v 1 ( t ) k T ) , p d c = p n 0 exp ⁡ ( e V 0 k T ) , ∣ v 1 ( t ) ∣ ≪ k T e = V t ⇒ p n ( 0 , t ) ≈ p d c ( 1 + v 1 ( t ) V t ) p n ( 0 , t ) ≈ p d c ( 1 + V ^ V t e j ω t ) . \begin{align*} p_n(0) &= p_{n0} \exp \left( \frac{eV_a}{kT} \right), \\ V_a &= V_0 + v_1(t), \quad \text{(直流静态偏置电压 交流信号)} \\ p_n(x=0) &= p_{n0} \exp \left( \frac{e(V_0 + v_1(t))}{kT} \right) = p_n(0, t), \\ p_n(0, t) &= p_{dc} \exp \left( \frac{e v_1(t)}{kT} \right), \\ p_{dc} &= p_{n0} \exp \left( \frac{e V_0}{kT} \right), \\ \left| v_1(t) \right| &\ll \frac{kT}{e} = V_t \Rightarrow p_n(0, t) \approx p_{dc} \left( 1 + \frac{v_1(t)}{V_t} \right) \\ p_n(0, t) &\approx p_{dc} \left( 1 + \frac{\hat{V}}{V_t} e^{j \omega t} \right). \end{align*} pn(0)Vapn(x=0)pn(0,t)pdcv1(t)pn(0,t)=pn0exp(kTeVa),=V0+v1(t),(直流静态偏置电压 交流信号)=pn0exp(kTe(V0+v1(t)))=pn(0,t),=pdcexp(kTev1(t)),=pn0exp(kTeV0),ekT=Vtpn(0,t)pdc(1+Vtv1(t))pdc(1+VtV^et).

​ 小信号导纳求解

​ n区中性区少子应用连续性方程,则
D p ∂ 2 ( δ p n ) ∂ x 2 − δ p n τ p 0 = ∂ ( δ p n ) ∂ t D_p \frac{\partial^2 (\delta p_n)}{\partial x^2} - \frac{\delta p_n}{\tau_{p0}} = \frac{\partial (\delta p_n)}{\partial t} Dpx22(δpn)τp0δpn=t(δpn)
​ 期望方程解为直流分量和交流分量之和。 p1(x)为过剩少子交 流分量的幅值
δ p n ( x , t ) = δ p 0 ( x ) + p 1 ( x ) e j ω t \delta p_n(x, t) = \delta p_0(x) + p_1(x)e^{j\omega t} δpn(x,t)=δp0(x)+p1(x)et
​ 代入,连续性方程则为
D p [ ∂ 2 ( δ p 0 ( x ) ) ∂ x 2 + ∂ 2 ( p 1 ( x ) ) ∂ x 2 e j ω t ] − δ p 0 ( x ) + p 1 ( x ) e j ω t τ p 0 = j ω p 1 ( x ) e j ω t D_p \left[ \frac{\partial^2 (\delta p_0(x))}{\partial x^2} + \frac{\partial^2 (p_1(x))}{\partial x^2} e^{j \omega t} \right] - \frac{\delta p_0(x) + p_1(x)e^{j \omega t}}{\tau_{p0}} = j \omega p_1(x)e^{j \omega t} Dp[x22(δp0(x))+x22(p1(x))et]τp0δp0(x)+p1(x)et=p1(x)et
​ 时变和非时变项分别集合
[ D p ∂ 2 ( δ p 0 ( x ) ) ∂ x 2 − δ p 0 ( x ) τ p 0 ] − [ D p ∂ 2 ( p 1 ( x ) ) ∂ x 2 − p 1 ( x ) τ p 0 − j ω p 1 ( x ) ] e j ω t = 0 \left[ D_p \frac{\partial^2 (\delta p_0(x))}{\partial x^2} - \frac{\delta p_0(x)}{\tau_{p0}} \right] - \left[ D_p \frac{\partial^2 (p_1(x))}{\partial x^2} - \frac{p_1(x)}{\tau_{p0}} - j \omega p_1(x) \right] e^{j \omega t} = 0 [Dpx22(δp0(x))τp0δp0(x)][Dpx22(p1(x))τp0p1(x)p1(x)]et=0
​ 当t=0时,前一项直流分量为零,则交流 分量为
D p ∂ 2 ( p 1 ( x ) ) ∂ x 2 − p 1 ( x ) τ p 0 − j ω p 1 ( x ) = 0 D_p \frac{\partial^2 (p_1(x))}{\partial x^2} - \frac{p_1(x)}{\tau_{p0}} - j \omega p_1(x) = 0 Dpx22(p1(x))τp0p1(x)p1(x)=0
​ 方程改写为

d 2 p 1 ( x ) d x 2 − C p 2 p 1 ( x ) = 0 C p 2 = 1 + j ω τ p 0 L p 2 \frac{d^2 p_1(x)}{dx^2} - C_p^2 p_1(x) = 0\\ C_p^2 = \frac{1 + j \omega \tau_{p0}}{L_p^2} dx2d2p1(x)Cp2p1(x)=0Cp2=Lp21+τp0

​ 解得

p 1 ( x ) = K 1 e − C ρ 2 x + K 2 e + C ρ 2 x p_1(x) = K_1 e^{-C_{\rho}^2 x} + K_2 e^{+C_{\rho}^2 x} p1(x)=K1eCρ2x+K2e+Cρ2x

​ 一个边界条件

p 1 ( x → + ∞ ) = 0 K 2 = 0 p_1(x \to +\infty) = 0 \\ K_2 = 0 p1(x+)=0K2=0

​ 另一个边界条件

p 1 ( 0 ) = K 1 = p d c ( V ^ 1 V t ) p_1(0) = K_1 = p_{dc} \left( \frac{\hat{V}_1}{V_t} \right) p1(0)=K1=pdc(VtV^1)

​ 所以交流少子分布与位置的关系为

p 1 ( 0 ) = K 1 = p d c ( V ^ i V t ) e − C ρ 2 x C p 2 = ( 1 + j ω τ p 0 ) L p 2 p_1(0) = K_1 = p_{dc} \left( \frac{\hat{V}_i}{V_t} \right) e^{-C_{\rho}^2 x}\\ C_p^2 = \frac{ \left( 1 + j \omega \tau_{p0} \right) }{L_p^2} p1(0)=K1=pdc(VtV^i)eCρ2xCp2=Lp2(1+τp0)

​ 另一方面,少子扩散电流为

J p = − e D p ∂ p n ∂ x ∣ x = 0 J_p = -e D_p \left. \frac{\partial p_n}{\partial x} \right|_{x=0} Jp=eDpxpn x=0

​ 代入少子直流和交流组成假设,可分为

J p = − e D p ∂ ( δ p n ) ∂ x ∣ x = 0 = − e D p ∂ ( δ p 0 ( x ) ) ∂ x ∣ x = 0 − e D p ∂ p 1 ( x ) ∂ x ∣ x = 0 e j ω t J_p = -e D_p \left. \frac{\partial (\delta p_n)}{\partial x} \right|_{x=0} = -e D_p \left. \frac{\partial (\delta p_0(x))}{\partial x} \right|_{x=0} - e D_p \left. \frac{\partial p_1(x)}{\partial x} \right|_{x=0} e^{j \omega t} Jp=eDpx(δpn) x=0=eDpx(δp0(x)) x=0eDpxp1(x) x=0et

​ 得出

J p = J p 0 + j p ( t ) J_p = J_{p0} + j_p(t) Jp=Jp0+jp(t)

​ 其中,直流电流为

J p 0 = − e D p ∂ ( δ p 0 ( x ) ) ∂ x ∣ x = 0 = e D p p n 0 L p [ exp ⁡ ( e V 0 k T ) − 1 ] J_{p0} = -e D_p \left. \frac{\partial (\delta p_0(x))}{\partial x} \right|_{x=0} = \frac{e D_p p_{n0}}{L_p} \left[ \exp \left( \frac{e V_0}{k T} \right) - 1 \right] Jp0=eDpx(δp0(x)) x=0=LpeDppn0[exp(kTeV0)1]

​ 交流电流(x=0处)为:Jp为交流电流相量

j p ( t ) = J ^ p e j ω t = − e D p ∂ p 1 ( x ) ∂ x ∣ x = 0 e j ω t j_p(t) = \hat{J}_p e^{j \omega t} = -e D_p \left. \frac{\partial p_1(x)}{\partial x} \right|_{x=0} e^{j \omega t} jp(t)=J^pet=eDpxp1(x) x=0et

​ 求解交流电流相量

J ^ p = − e D p ( − C p ) [ p d c ( V ^ 1 V t ) ] e − C p x ∣ x = 0 \hat{J}_p = -e D_p (-C_p) \left[ p_{dc} \left( \frac{\hat{V}_1}{V_t} \right) \right] e^{-C_p x} \bigg|_{x=0} J^p=eDp(Cp)[pdc(VtV^1)]eCpx x=0

​ x=0处乘以截面积A

I ^ p = A J ^ p = e A D p C p p d c ( V ^ 1 V t ) \hat{I}_p = A \hat{J}_p = e A D_p C_p p_{dc} \left( \frac{\hat{V}_1}{V_t} \right) I^p=AJ^p=eADpCppdc(VtV^1)

​ 代入Cp则

I ^ p = e A D p p d c L p ( V ^ 1 V t ) ( 1 + j ω τ p 0 ) \hat{I}_p = e \frac{A D_p p_{dc}}{L_p} \left( \frac{\hat{V}_1}{V_t} \right) \sqrt{ \left( 1 + j \omega \tau_{p0} \right) } I^p=eLpADppdc(VtV^1)(1+τp0)

​ 若定义

I p 0 = e A D p p d c L p = e A D p p n 0 L p exp ⁡ ( e V 0 k T ) I_{p0} = e \frac{A D_p p_{dc}}{L_p} = e \frac{A D_p p_{n0}}{L_p} \exp \left( \frac{e V_0}{k T} \right) Ip0=eLpADppdc=eLpADppn0exp(kTeV0)

​ 则n区少子空穴的交流电流相量为

I ^ p = I p 0 ( V ^ 1 V t ) 1 + j ω τ p 0 \hat{I}_p = I_{p0} \left( \frac{\hat{V}_1}{V_t} \right) \sqrt{1 + j \omega \tau_{p0}} I^p=Ip0(VtV^1)1+τp0

​ 同理,p区少子电子的交流电流相量为

I ^ n = I n 0 ( V ^ 1 V t ) 1 + j ω τ n 0 I p 0 = e A D n n p 0 L n exp ⁡ ( e V 0 k T ) \hat{I}_n = I_{n0} \left( \frac{\hat{V}_1}{V_t} \right) \sqrt{1 + j \omega \tau_{n0}}\\ I_{p0} = e \frac{A D_n n_{p0}}{L_n} \exp \left( \frac{e V_0}{k T} \right) I^n=In0(VtV^1)1+τn0 Ip0=eLnADnnp0exp(kTeV0)

​ 总交流电流
I ^ = I ^ p + I ^ n \hat{I} = \hat{I}_p + \hat{I}_n I^=I^p+I^n
​ 所以,PN结二极管总电流可写为
J = ( q p n 0 D p τ p + q n p 0 D n τ n ) exp ⁡ ( q ( V 0 + V 1 exp ⁡ ( j ω t ) ) k T ) ≈ ( q p n 0 D p τ p ∗ + q n p 0 D n τ n ∗ ) [ exp ⁡ ( q V 0 k T ) ] [ 1 + q V 1 k T exp ⁡ ( j ω t ) ] J = \left( q p_{n0} \sqrt{\frac{D_p}{\tau_p}} + q n_{p0} \sqrt{\frac{D_n}{\tau_n}} \right) \exp \left( \frac{q \left( V_0 + V_1 \exp(j \omega t) \right)}{k T} \right)\\ \approx \left( q p_{n0} \sqrt{\frac{D_p}{\tau^*_p}} + q n_{p0} \sqrt{\frac{D_n}{\tau^*_n}} \right) \left[ \exp \left( \frac{q V_0}{k T} \right) \right] \left[ 1 + \frac{q V_1}{k T} \exp(j \omega t) \right] J=(qpn0τpDp +qnp0τnDn )exp(kTq(V0+V1exp(t)))(qpn0τpDp +qnp0τnDn )[exp(kTqV0)][1+kTqV1exp(t)]

​ 其中,交流部分
J 1 = ( q D p p n 0 1 + j ω τ p L p + q D n n p 0 1 + j ω τ n L n ) exp ⁡ ( q V 0 k T ) q V 1 k T J_1 = \left( \frac{q D_p p_{n0} \sqrt{1 + j \omega \tau_p}}{L_p} + \frac{q D_n n_{p0} \sqrt{1 + j \omega \tau_n}}{L_n} \right) \exp \left( \frac{q V_0}{k T} \right) \frac{q V_1}{k T} J1=(LpqDppn01+τp +LnqDnnp01+τn )exp(kTqV0)kTqV1
​ 求二极管小信号导纳为(此时仅考虑导纳中的虚数电纳部分)
Y = I ^ 1 V ^ 1 = I ^ p + I ^ n V ^ 1 = ( 1 V t ) [ I p 0 1 + j ω τ p 0 + I n 0 1 + j ω τ n 0 ] Y = \frac{\hat{I}_1}{\hat{V}_1} = \frac{\hat{I}_p + \hat{I}_n}{\hat{V}_1} = \left( \frac{1}{V_t} \right) \left[ I_{p0} \sqrt{1 + j \omega \tau_{p0}} + I_{n0} \sqrt{1 + j \omega \tau_{n0}} \right] Y=V^1I^1=V^1I^p+I^n=(Vt1)[Ip01+τp0 +In01+τn0 ]
​ 因为低频下 ω τ ≪ 1 \omega \tau \ll 1 ωτ1
Y = ( 1 V t ) [ I p 0 1 + j ω τ p 0 + I n 0 1 + j ω τ n 0 ] ≈ ( 1 V t ) [ I p 0 ( 1 + j ω τ p 0 2 ) + I n 0 ( 1 + j ω τ n 0 2 ) ] = ( 1 V t ) ( I p 0 + I n 0 ) + j ω ( 1 2 V t ) [ I p 0 τ p 0 + I n 0 τ n 0 ] \begin{align*} Y &= \left( \frac{1}{V_t} \right) \left[ I_{p0} \sqrt{1 + j \omega \tau_{p0}} + I_{n0} \sqrt{1 + j \omega \tau_{n0}} \right] \\ &\approx \left( \frac{1}{V_t} \right) \left[ I_{p0} \left( 1 + \frac{j \omega \tau_{p0}}{2} \right) + I_{n0} \left( 1 + \frac{j \omega \tau_{n0}}{2} \right) \right] \\ &= \left( \frac{1}{V_t} \right) \left( I_{p0} + I_{n0} \right) + j \omega \left( \frac{1}{2 V_t} \right) \left[ I_{p0} \tau_{p0} + I_{n0} \tau_{n0} \right] \end{align*} Y=(Vt1)[Ip01+τp0 +In01+τn0 ](Vt1)[Ip0(1+2τp0)+In0(1+2τn0)]=(Vt1)(Ip0+In0)+(2Vt1)[Ip0τp0+In0τn0]
​ 扩散电容求解

​ 根据上式可定义为:(导纳等效为电导和电纳之和。)
Y = g d + j ω C d Y = g_d + j \omega C_d Y=gd+Cd
​ 则(其中,直流电导定义式。)
g d = ( 1 V t ) ( I p 0 + I n 0 ) = I D Q V t = 1 r d g_d = \left( \frac{1}{V_t} \right) (I_{p0} + I_{n0}) = \frac{I_{DQ}}{V_t} = \frac{1}{r_d} gd=(Vt1)(Ip0+In0)=VtIDQ=rd1
​ 电纳中的等效电容为
C d = ( 1 2 V t ) [ I p 0 τ p 0 + I n 0 τ n 0 ] C_d = \left( \frac{1}{2 V_t} \right) \left[ I_{p0} \tau_{p0} + I_{n0} \tau_{n0} \right] Cd=(2Vt1)[Ip0τp0+In0τn0]
​ 被称为扩散电容,也就是扩散电容的定义式,表示交流小信号下,耗尽层外侧过剩少子随交流电压变化产生的电荷充放电现象及能力,与正向电流成正比。

在这里插入图片描述

​ 交流频率较大时,上式要修正,Cd随频率增加而快速降低。

​ 电流越大,扩散电容越大;二极管正向,低频工作下Cd起到重要作用。

​ 还可改写为
C d = e 2 2 k T ( L n n p 0 + L p p n 0 ) exp ⁡ ( q V k T ) C_d = \frac{e^2}{2 k T} \left( L_n n_{p0} + L_p p_{n0} \right) \exp \left( \frac{q V}{k T} \right) Cd=2kTe2(Lnnp0+Lppn0)exp(kTqV)
​ p±n单边结
C d 0 = e L p 2 2 k T D p J F C_{d0} = \frac{e L_p^2}{2 k T D_p} J_F Cd0=2kTDpeLp2JF

  • PN结二极管小信号等效电路

​ 理想情况下
在这里插入图片描述

​ 实际情况下

在这里插入图片描述

​ •势垒电容和扩散电容及扩散电阻并联。

​ •P区和n区中性区和接触电阻形成串联电阻,对实际偏压实现分压。

PN结存储电荷

  • 二极管开关

​ PN结二极管可用来做电路开关;正偏时, 超过一定电压(VA),电流急剧增大,为开态;反偏时只有极小电流,为闭态。

在这里插入图片描述

  • PN结存储电荷

​ PN结从反向偏置到正向偏置,速度很快;而从正向到反向,原来形成扩散电流的过剩载流子不能很快消失,存在电荷存储效应,需要一定时间形成反向耗尽状态,该时间称为反向恢复时间。

​ 针对p+n结,对n区中性区少子空穴积分
Q = q A L p ∞ ( p n − p n 0 ) d x = q A L p ∞ [ p n 0 ( e q V F k T − 1 ) ] e − x L p d x = q A L p p n 0 ( e q V F k T − 1 ) I F = q A D p L p p n 0 ( e q V F k T − 1 ) L p = D p τ p Q = τ p I F Q = q A L_p^{\infty} \left( p_n - p_{n0} \right) dx = q A L_p^{\infty} \left[ p_{n0} \left( e^{\frac{q V_F}{k T}} - 1 \right) \right] e^{-\frac{x}{L_p}} dx = q A L_p p_{n0} \left( e^{\frac{q V_F}{k T}} - 1 \right)\\ I_F = \frac{q A D_p}{L_p} p_{n0} \left( e^{\frac{q V_F}{k T}} - 1 \right)\\ L_p = \sqrt{D_p \tau_p}\\ Q = \tau_p I_F\\ Q=qALp(pnpn0)dx=qALp[pn0(ekTqVF1)]eLpxdx=qALppn0(ekTqVF1)IF=LpqADppn0(ekTqVF1)Lp=Dpτp Q=τpIF

瞬态开关特性与求解

​ 形成如图所示的开关电路

在这里插入图片描述

​ 正向工作时,PN结正向电流IF;t=0时,偏压突然从正向到反向,此时PN结电流不是直接到IS,而是首先出现一个较大恒定反向电流IR阶段,然后逐步衰减到IS。

I R I_R IR工作阶段时间为 t s t_s ts,称为存储时间;反向电流衰减时间(IR到0.1IR)称为下降时间; 两者之和为反向恢复时间 t o f f t_{off} toff:
t o f f = t s + t f t_{off} = t_s + t_f toff=ts+tf
​ 比正向瞬变长很多。

​ 采用电荷控制模型计算:刚开始0<t<ts之内,反向电流恒定,所以(R-偏置电阻)
I R ≈ V R R I_R \approx \frac{V_R}{R} IRRVR
​ 此时PN结中载流子变化率等于反向抽取(通过外电路流走)和内部复合之和

− d Q d t = I R + Q τ p Q ( t ) = τ p ( I F + I R ) e − t τ p − τ p I R t = 0 时,  Q = τ p I F t = t s 时,  Q ( t s ) = 0 t s = τ p ln ⁡ ( 1 + I F I R ) -\frac{dQ}{dt} = I_R + \frac{Q}{\tau_p}\\ Q(t) = \tau_p (I_F + I_R) e^{-\frac{t}{\tau_p}} - \tau_p I_R\\ t = 0 \text{时, } Q = \tau_p I_F\\ t = t_s \text{时, } Q(t_s) = 0\\ t_s = \tau_p \ln \left( 1 + \frac{I_F}{I_R} \right)\\ dtdQ=IR+τpQQ(t)=τp(IF+IR)eτptτpIRt=0Q=τpIFt=tsQ(ts)=0ts=τpln(1+IRIF)
​ 根据连续性方程精确求解p+n结得
erf ( t s τ p ) = ( 1 + I R I F ) − 1 erf ( t s τ p ) exp ⁡ ( − t f τ p ) = 1 π ( 1 + O ( I R I F ) ) erffx = 2 π ∫ 0 κ e − u 2 d u 其中, 当  I R I F  很小时,  W n ≫ L p  为长 PN 结时, t s + t f ≈ τ p 2 ( I R I F ) − 1 当  I R I F  很大时,  W n ≤ L p  为短 PN 结时, t s + t f ≈ W n 2 2 D p ( I R I F ) − 1 \text{erf} \left( \sqrt{\frac{t_s}{\tau_p}} \right) = \left( 1 + \frac{I_R}{I_F} \right)^{-1}\\ \text{erf} \left( \sqrt{\frac{t_s}{\tau_p}} \right) \exp\left( -\frac{t_f}{\tau_p} \right) = \frac{1}{\sqrt{\pi}} \left( 1 + O\left( \frac{I_R}{I_F} \right) \right)\\ \text{erf} \text{fx} = \frac{2}{\sqrt{\pi}} \int_0^{\kappa} e^{-u^2} du\\ \text{其中,}\\ \text{当 } \frac{I_R}{I_F} \text{ 很小时, } W_n \gg L_p \text{ 为长 PN 结时,}\\ t_s + t_f \approx \frac{\tau_p}{2} \left( \frac{I_R}{I_F} \right)^{-1}\\ \text{当 } \frac{I_R}{I_F} \text{ 很大时, } W_n \leq L_p \text{ 为短 PN 结时,}\\ t_s + t_f \approx \frac{W_n^2}{2 D_p} \left( \frac{I_R}{I_F} \right)^{-1}\\ erf(τpts )=(1+IFIR)1erf(τpts )exp(τptf)=π 1(1+O(IFIR))erffx=π 20κeu2du其中, IFIR 很小时WnLp 为长 PN 结时,ts+tf2τp(IFIR)1 IFIR 很大时WnLp 为短 PN 结时,ts+tf2DpWn2(IFIR)1
​ ➢为了使得二极管快速关断,需要有较大的反偏电流IR和较小的少子寿命。在进行二极管设计时, 设计者要给瞬态反偏电流脉冲一个泄放路径以使得pn结二极管的开关速度变得较快。

➢开启过程的第一阶段一般进行的非常快,它是用来使得空间电荷区的宽度从反偏达到Va=0时的 热平衡宽度所用的时间,在此期间电离施主和受 主会呈电中性,此过程对二极管设计影响较小。

➢开启过程的第二阶段即是建立少子分布所用的时间,此时,pn结的压降逐渐增加到稳定值 (ts+tf),需要花费一定的时间,占主导部分。 因此,需要设计少子寿命很小而且正偏电流较小 的二极管来提升瞬态开关速度。常见方法是禁带宽度中引入Au等深能级掺杂元素,减少少子寿命与降低正向电流。

  • 特性

​ T<0,Von为(Va)为PN结的外加偏置,即pn结上的压降或pn结两端电压差,IF为正偏下的pn结电流

​ T>0,开关变成反偏,由于电容效应(扩散电容), V o n V_{on} Von不会马上变化

​ 电荷储存效应:PN结正向导通时少子在扩散区积累的现象。电荷存储效应是开关延迟的根本原因。

t s t_s ts:储存时间

t f t_f tf:下降时间

t r r = t s + t f t_{rr}=t_s+t_f trr=ts+tf(反向恢复时间) t s t_s ts主要品质因素来表征瞬态关断过程

t r r t_{rr} trr反向恢复时间
减小trr的方法:

噪声特性

​ 噪声指半导体器件工作时通过他们的电流 或电压所产生的自发涨落现象;它决定了器件工作时信号量的下限。

​ 主要有热噪声、闪变噪声、散粒噪声等:

​ 热噪声和温度相关,为载流子无规则运动造成,也称为白噪声,广泛存在与频率无关。
⟨ V n 2 ⟩ = 4 k T B R \langle V_n^2 \rangle = 4k T B R Vn2=4kTBR
​ 闪变噪声和频率倒数成比例,也称为1/f噪 声,主要由表面效应产生。

​ 散粒噪声和形成电流的载流子离散性造成, 是噪声主要来源,中低频下与频率无关。
⟨ i n 2 ⟩ = 2 q B ∣ I ∣ \langle i_n^2 \rangle = 2q B |I| in2=2qBI
​ 小注入下总均方噪声电流(忽略1/f噪声):
⟨ i n 2 ⟩ = 4 k T B R + 2 q B ∣ I ∣ \langle i_n^2 \rangle = \frac{4k T B}{R} + 2q B |I| in2=R4kTB+2qBI
​ PN结二极管中利用理想肖克莱公式求1/R:
− 1 R = d I d V = d d V { I s [ exp ⁡ ( e V a k T ) − 1 ] } = q I s k T exp ⁡ ( e V a k T ) -\frac{1}{R} = \frac{dI}{dV} = \frac{d}{dV}\left\{ I_s \left[ \exp\left(\frac{eV_a}{kT}\right) - 1 \right] \right\} = \frac{q I_s}{kT} \exp\left(\frac{eV_a}{kT}\right) R1=dVdI=dVd{Is[exp(kTeVa)1]}=kTqIsexp(kTeVa)
​ PN结二极管中总均方噪声电流为:
⟨ i n 2 ⟩ ≈ 6 q B I s exp ⁡ ( e V a k T ) \langle i_n^2 \rangle \approx 6q B I_s \exp\left(\frac{eV_a}{kT}\right) in26qBIsexp(kTeVa)
​ 与反向饱和电流成正比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值