物理模拟-动态水面

物理模拟-动态水面


OpenGL模拟

水面顶点网格

顶点数组

顶点数组,我的设想是一个正方形区域(x[-l,l],z[-l,l]),也就是说边长为l

而对于每一行的网格数,我们定义为n,网格数量代表了水面的精度大小,n越大,精度越大,性能消耗也就越大。

我们以一行一行的方式给顶点数组赋值,每次完成一行就移动到下一行

请注意:因为每个顶点有三个坐标,因此顶点数组的长度应为:n*n*3

代码如下:

//坐标范围是X轴(-l,l),Z轴(-l,l)
float valueX = -waterLength;
float valueZ = waterLength;	//以上两个参数是为了顶点数组从水池左上角开始计算水面顶点数组,这样比较符合日常直觉
int index = 0;
float number = 2*waterLength / (n - 1);	//得到单行/单列的格网数
//顶点数组计算 注意valueX与valueZ的方向与二维笛卡尔坐标的X和Y方向一致
for (int i = 0; i < n*n; i++)	//计算的顺序是先保持Z值不变从左到右,然后再移动到下一行进行重复(即优先从左到右,再从上到下)
{
  vertices[index++] = valueX;
  vertices[index++] = 0;	//该部分的值后续是要动态计算的,因而此处赋值多少都可以
  vertices[index++] = valueZ;

  valueX += number;	//移动到下一列
  if ((i+1)%n==0)	//代表一行已经计算完毕,故而要将valueX(行首的X值)恢复到3,而对Z进行一次减法,使之移动到下一行
  {
    valueX = -waterLength;
    valueZ -= number;
  }
}

顶点索引数组

顶点索引数组就比较简单了,它本质上是像下图这样的网格,每个格子都有两个三角形,每个三角形都有3个顶点,

每三个数索引一个三角形,因此,顶点索引数组的长度为:(n-1)*(n-1)*6

在这里插入图片描述

赋值代码如下

    for(int i=0;i<n-1;i++){
        for(int j=0;j<n-1;j++){
          	//三角形A
            indices[index++] = j+i*n;
            indices[index++] = j+1+i*n;
            indices[index++] = j+n+i*n;
            //三角形B
            indices[index++] = j + 1+i*n;
            indices[index++] = j + n+i*n;
            indices[index++] = j + n + 1+i*n;
        }
    }

现在,我们已经定义了水面网格,y轴坐标我们会在动态计算里去更新它

水面动态计算

想要水面的动态流动效果,首先我们需要了解一个基本物理知识:正弦波

一维计算公式如下:

y = Asin(wx+Φ)

A:振幅大小

w:频率大小,w越大,频率越大,波长越小

Φ:波的偏移

但是这里我们需要的是二维,因此,我们只需要进行一个简单的扩展(注意,三维中,y是竖直的轴)

y = Asin(w(x,z)+Φ)

当然这时候你一定会疑惑,这样写的公式,在数学上是如何计算的呢?

其实很简单,(x,z)只是一种易于理解的写法,我们实际上传入的是矢量的模。

如果我们直接将(x,z)的坐标通过sqr(x^2+z^2)传入,那么波的流动形状就是以原点(0,0)为中心的环形水波

效果类似下图:

在这里插入图片描述

当然,我们可以通过一些数学手段来控制中心点:sqr((x-l)^2+(z-l)^2)

在这里插入图片描述

如果,我们将(x,z)通过x或者z直接传入,那么水波形状就是平行流动的波形,如下图

在这里插入图片描述

我想你应该已经理解了二维波的计算公式了。

现在,我们只需要调节一下频率,并且在使用时间来代替偏移量,就能获得流动的看起来有点真实的水波了

在这里插入图片描述

当然,你可能仍然觉得不够真实,不过这没有关系,因为波是可以叠加的,通过叠加也能创造出更多有趣的水波。

最终水面正弦波计算代码如下如下

void WaterSin(float *vertices, int n)	//水面正弦波数组的计算
{
    for (int i = 0; i < n*n; i++) {
        //环形波
        float d = sqrt((vertices[i * 3] - waterLength)*(vertices[i * 3] - waterLength) + (vertices[i * 3 + 2] - waterLength)*(vertices[i * 3 + 2] - waterLength));//计算X与Z的二范数
        //中心波
        float d1 = sqrt((vertices[i * 3])*(vertices[i * 3]) + (vertices[i * 3 + 2])*(vertices[i * 3 + 2]));//计算X与Z的二范数
        //平行波
        float d2 = vertices[i*3];
        //注意,由于1.5是真实的最高坐标,因而我们最后要让正弦波叠加后的最大值比1.5稍低一些从而使得水面看起来不会“溢出去”
        float sum = 0;
      	//你可以叠加波
      	//例如:0.2f*sin(PI*d/5+right_time*PI/75)+0.2f*sin(PI*d1/5+right_time*PI/75)
        sum = 0.2f*sin(PI*d/5+right_time*PI/75);//sum即为物理模型下的最终海波
        vertices[i * 3 + 1] = sum+1.15f;
    }
}

完整代码以及资源:
https://download.csdn.net/download/qq_52324195/85235290

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值