免责声明:
本文所提供的信息和内容仅供参考。作者对本文内容的准确性、完整性、及时性或适用性不作任何明示或暗示的保证。在任何情况下,作者不对因使用本文内容而导致的任何直接或间接损失承担责任,包括但不限于数据丢失、业务中断或其他经济损失。
读者在使用本文信息时,应自行验证其准确性和适用性,并对其使用结果负责。本文内容不构成专业技术咨询或建议,具体的技术实现和应用应根据实际情况和需要进行详细分析和验证。
本文所涉及的任何商标、版权或其他知识产权均属于其各自的所有者。若本文中引用了第三方的资料或信息,引用仅为学术交流目的,不构成对第三方内容的认可或保证。
若有任何疑问或需进一步信息,请联系本文作者或相关专业人士。
目录
ACTIVE_WIDTH (0x0010) Register
ACTIVE_HEIGHT (0x0018) Register
VIDEO_FORMAT (0x0020) Register
六、Customizing and Generating the Core
前言
伽马校正的核心在于匹配图像数据的存储与传输与人眼感知的非线性特性,以及显示器的非线性输出特性。通过这种校正,我们可以在有限的信号范围内(如 8 位 RGB 分量)更有效地分配亮度值,从而优化图像的视觉质量。
一、Overview
在讨论伽马校正时,输入和输出值通常被归一化到 0 到 1 之间。伽马校正的过程通过一个幂函数来进行调整,这个幂函数的形式为:
其中,γ
(伽马值)决定了校正的方式:
-
伽马压缩 (γ < 1):
- 当
γ
小于 1 时,输入的低亮度值在经过幂函数后会变得更大,而高亮度值的变化较小。 - 这种情况通常用于编码图像数据,称为伽马压缩,因为它压缩了高亮度范围,使得暗部的细节更加明显,适合人眼的感知特性。
- 例如,
γ = 0.5
时,函数表现为开平方,将低亮度部分“拉伸”,使得暗部区域的亮度提高,更容易被人眼区分。
- 当
-
伽马扩展 (γ > 1):
- 当
γ
大于 1 时,输入的低亮度值经过幂函数后会变得更小,高亮度值的变化较大。 - 这种情况通常用于显示设备中,称为伽马扩展,因为它扩展了暗部的亮度范围,以恢复到原始的线性关系。
- 例如,
γ = 2.2
时,函数压缩了低亮度部分,恢复显示器的非线性特性,确保图像显示的亮度与原始的视觉感受相一致。
- 当