进化算法的通用流程

  1. 目标

    • 进化算法旨在找到函数 (f(x)) 的最大值,即 (\arg \max f(x))。
  2. 初始种群

    • 算法从一个初始种群开始,包含多个候选解(Solution1, Solution2, Solution3等)。
  3. 选择(Selection)

    • 从当前种群中选择父代个体,这些个体将用于生成新的候选解。
  4. 变异(Mutation)

    • 对选中的父代个体进行变异操作,以产生新的个体。
  5. 重组(Recombination)

    • 通过重组(也称为交叉或杂交)操作,将父代个体的某些特征组合起来,生成新的后代。
  6. 后代

    • 通过变异和重组操作生成新的候选解。
  7. 适应度评估(Fitness evaluation)

    • 评估每个个体的适应度,即它们在目标函数 (f(x)) 中的表现。
  8. 选择标准(Survivor selection criterion)

    • 根据适应度评估结果,选择适应度较高的个体进入下一代。
  9. 终止条件(Stop criterion)

    • 检查是否满足终止条件,如达到最大迭代次数、解的质量达到预定阈值等。
  10. 新种群(New population)

    • 根据选择标准,形成新的种群,准备进行下一轮迭代。
  11. 循环

    • 如果未满足终止条件,算法将循环回到选择步骤,继续迭代。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

司南锤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值