-
目标:
- 进化算法旨在找到函数 (f(x)) 的最大值,即 (\arg \max f(x))。
-
初始种群:
- 算法从一个初始种群开始,包含多个候选解(Solution1, Solution2, Solution3等)。
-
选择(Selection):
- 从当前种群中选择父代个体,这些个体将用于生成新的候选解。
-
变异(Mutation):
- 对选中的父代个体进行变异操作,以产生新的个体。
-
重组(Recombination):
- 通过重组(也称为交叉或杂交)操作,将父代个体的某些特征组合起来,生成新的后代。
-
后代:
- 通过变异和重组操作生成新的候选解。
-
适应度评估(Fitness evaluation):
- 评估每个个体的适应度,即它们在目标函数 (f(x)) 中的表现。
-
选择标准(Survivor selection criterion):
- 根据适应度评估结果,选择适应度较高的个体进入下一代。
-
终止条件(Stop criterion):
- 检查是否满足终止条件,如达到最大迭代次数、解的质量达到预定阈值等。
-
新种群(New population):
- 根据选择标准,形成新的种群,准备进行下一轮迭代。
-
循环:
- 如果未满足终止条件,算法将循环回到选择步骤,继续迭代。
进化算法的通用流程
最新推荐文章于 2024-11-09 15:56:43 发布