函数

前言

  • 注意一元与多元概念的不同点(比如:一元可导能推出连续,但是多元可导不能推出连续)

难点:

一元微分学
  • 递推型数列极限
  • 微分中值定理证明题
一元积分学
  • 定积分的等式不等式证明
多元积分学
  • 重积分
  • 线面积分
无穷级数
  • 常数项级数证明敛散性
  • 幂级数求和

基本运算(70%)

  1. 求极限
  2. 求导数
  3. 求积分

知识点

复合函数

反函数

初等函数

单调性

奇偶性

变上限积分是一个原函数,有关原函数的问题可以从它入手

证明:
证明

  1. 证明两个变限积分相等,要考虑变量代换
  2. 换完变量 t t t,上下限也要换

这个依然对

因为:

周期性

左推右:

  • 周期函数一个周期内的积分值相同

右推左:

  • 奇周期函数周期内积分值为 0 0 0

有界性

闭区间连续推出有界

如果控制一下端点的单侧极限:
有界性推广

  • 有界性推广的证明见李正元全书例1.41(利用极限的局部有界性即可证明)

导函数有限区间内有界则原函数有界

证明

导函数有界

  • 联系导数与函数:微分中值定理
  • 有界的证明,证绝对值小等于某值

题型

  • 有界性推广
  • α > 0 α>0 α>0时, x α > l n x x^{α}>lnx xα>lnx

  • C项利用极限的局部保号性证明

A项的反例

  • 某点单调增:左邻域都比他小,右邻域都比他大
  • 这个题如果保证导函数在 0 0 0处连续,那么A项也是对的,因为:

f ′ ( 0 ) > 0 f'(0)>0 f(0)>0且在 0 0 0处连续,那么就有:
lim ⁡ x → 0 f ′ ( x ) = f ′ ( 0 ) > 0 \lim_{x \to 0} {f'(x)}= f'(0)>0\quad limx0f(x)=f(0)>0
根据极限的局部保号性,就有 0 0 0附近邻域内导数都大于0,即可推出邻域内单调递增
反例显然不满足导函数0处连续

  • 法一:按定义证明
  • 法二:按照前面奇偶性的结论证明(注意这个变限积分的求导方法)

  • 注意不要求 F ( x ) F(x) F(x)的二阶导数,因为题目没说 f ( x ) f(x) f(x)可导
  • 利用积分中值定理

不用积分中值定理也可(两种方法):
法一:利用积分不等式

  • x < 0 x<0 x<0时同理

积分不等式

法二:化成统一的形式

  • 注意是对 t t t的积分, x x x, f ( x ) f(x) f(x)都是常数,所以:

x f ( x ) = ∫ 0 x f ( x ) d t xf(x)=\int_0^xf(x)dt xf(x)=0xf(x)dt

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值